Fuzzy model predictive control: techniques, stability issues, and examples

H. Nounou, Kevin M. Passino
{"title":"Fuzzy model predictive control: techniques, stability issues, and examples","authors":"H. Nounou, Kevin M. Passino","doi":"10.1109/ISIC.1999.796692","DOIUrl":null,"url":null,"abstract":"Fuzzy model predictive control (FMPC) algorithms presented here are model-based control schemes in which the models used for prediction are Takagi-Sugeno fuzzy systems (TSFS). Three approaches to FMPC design are discussed. The fuzzy model in the first approach can be represented as a time-varying affine model that is used for control. In the second approach, the fuzzy system is a convex combination of multiple affine models, where the control is a convex combination of multiple controllers. Lastly, the control of the third algorithm is obtained when only the model with the highest certainty is used in the design. Also, we extend the idea to have an adaptive controller for the first algorithm, where the parameters of the fuzzy model are updated online.","PeriodicalId":300130,"journal":{"name":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1999.796692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Fuzzy model predictive control (FMPC) algorithms presented here are model-based control schemes in which the models used for prediction are Takagi-Sugeno fuzzy systems (TSFS). Three approaches to FMPC design are discussed. The fuzzy model in the first approach can be represented as a time-varying affine model that is used for control. In the second approach, the fuzzy system is a convex combination of multiple affine models, where the control is a convex combination of multiple controllers. Lastly, the control of the third algorithm is obtained when only the model with the highest certainty is used in the design. Also, we extend the idea to have an adaptive controller for the first algorithm, where the parameters of the fuzzy model are updated online.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊模型预测控制:技术、稳定性问题和例子
本文提出的模糊模型预测控制(FMPC)算法是基于模型的控制方案,其中用于预测的模型是Takagi-Sugeno模糊系统(TSFS)。讨论了FMPC的三种设计方法。第一种方法中的模糊模型可以表示为用于控制的时变仿射模型。在第二种方法中,模糊系统是多个仿射模型的凸组合,其中控制是多个控制器的凸组合。最后,在只使用确定性最高的模型进行设计时,得到了第三种算法的控制。此外,我们扩展了该思想,为第一种算法提供了自适应控制器,其中模糊模型的参数在线更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive control of uncertain Chua's circuits Multi-resolution methods in non-destructive testing of aerospace structures and in medicine Multi-resolution techniques in the rules-based intelligent control systems: a universal approximation result Adaptive critic designs for self-learning ship steering control Stability analysis of switched systems with impulse effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1