{"title":"Multi-resolution techniques in the rules-based intelligent control systems: a universal approximation result","authors":"Y. Yam, Hung T. Nguyen, V. Kreinovich","doi":"10.1109/ISIC.1999.796657","DOIUrl":null,"url":null,"abstract":"One of the main problems of fuzzy control is that the number of rules which are necessary to represent a given control strategy with a given accuracy, grows exponentially with the increase in accuracy. As a result, for reasonable accuracy and a reasonable number of input variables, a great number of rules is sometimes needed. In this paper, we start to solve this problem by pointing out that traditional one-step fuzzy rule bases, in which expert rules directly express control in terms of the input, are often a simplification of the actual multi-step expert reasoning. We show that a natural formalization of such expert reasoning leads to a universal approximation result in which the number of control rules does not increase with the increase in accuracy. Thus, this multi-resolution approach looks like a promising solution to the rule base explosion problem.","PeriodicalId":300130,"journal":{"name":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1999.796657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
One of the main problems of fuzzy control is that the number of rules which are necessary to represent a given control strategy with a given accuracy, grows exponentially with the increase in accuracy. As a result, for reasonable accuracy and a reasonable number of input variables, a great number of rules is sometimes needed. In this paper, we start to solve this problem by pointing out that traditional one-step fuzzy rule bases, in which expert rules directly express control in terms of the input, are often a simplification of the actual multi-step expert reasoning. We show that a natural formalization of such expert reasoning leads to a universal approximation result in which the number of control rules does not increase with the increase in accuracy. Thus, this multi-resolution approach looks like a promising solution to the rule base explosion problem.