Computationally efficient image encryption technique based on selective pixel diffusion

Malik Obaid Ul Islam, S. A. Parah, B. A. Malik
{"title":"Computationally efficient image encryption technique based on selective pixel diffusion","authors":"Malik Obaid Ul Islam, S. A. Parah, B. A. Malik","doi":"10.1109/IBSSC56953.2022.10037561","DOIUrl":null,"url":null,"abstract":"Medical images play a vital role in disease diagnosis. When the medical images are communicated through an insecure transmission channel, their chances of being accessed by an unauthorized user increase resulting in the loss of patients' sensitive personal data. Thus, providing security to such image data while transmitting it over an insecure communication network becomes crucial. This work presents a computationally efficient cryptosystem for encrypting medical images. The encryption process consists of multiple phases. In the first phase the control parameters and initial values for the various chaotic maps used, are evaluated. This phase is followed by encryption in which these evaluated values are used to obtain the chaotic sequences for encryption. In the subsequent phases, we make use of a new approach of selective, pixel-dependent diffusion to obtain the cipher image. The effectiveness of our cryptosystem is evaluated using security analysis and execution time analysis. The obtained outcome shows a high-security level compared to already existing state-of-the-art techniques. In addition, the computational complexity of our scheme is very small (0.1sec for encrypting a 256×256 image) making it suitable for real-time smart health applications.","PeriodicalId":426897,"journal":{"name":"2022 IEEE Bombay Section Signature Conference (IBSSC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC56953.2022.10037561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Medical images play a vital role in disease diagnosis. When the medical images are communicated through an insecure transmission channel, their chances of being accessed by an unauthorized user increase resulting in the loss of patients' sensitive personal data. Thus, providing security to such image data while transmitting it over an insecure communication network becomes crucial. This work presents a computationally efficient cryptosystem for encrypting medical images. The encryption process consists of multiple phases. In the first phase the control parameters and initial values for the various chaotic maps used, are evaluated. This phase is followed by encryption in which these evaluated values are used to obtain the chaotic sequences for encryption. In the subsequent phases, we make use of a new approach of selective, pixel-dependent diffusion to obtain the cipher image. The effectiveness of our cryptosystem is evaluated using security analysis and execution time analysis. The obtained outcome shows a high-security level compared to already existing state-of-the-art techniques. In addition, the computational complexity of our scheme is very small (0.1sec for encrypting a 256×256 image) making it suitable for real-time smart health applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于选择性像素扩散的高效计算图像加密技术
医学图像在疾病诊断中起着至关重要的作用。当医学图像通过不安全的传输通道进行通信时,未经授权的用户访问图像的可能性会增加,从而导致患者敏感个人数据的丢失。因此,在通过不安全的通信网络传输这些图像数据时,为其提供安全性变得至关重要。这项工作提出了一种计算效率高的加密医学图像的密码系统。加密过程包括多个阶段。在第一阶段,对所使用的各种混沌映射的控制参数和初始值进行评估。这个阶段之后是加密,其中使用这些评估值来获得用于加密的混沌序列。在随后的阶段中,我们使用了一种新的方法,即选择性的、像素相关的扩散来获得密码图像。使用安全性分析和执行时间分析来评估我们的密码系统的有效性。与现有的最先进技术相比,获得的结果显示出较高的安全水平。此外,该方案的计算复杂度非常小(加密256×256图像只需0.1秒),适合于实时智能健康应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decentralized Ride Hailing System using Blockchain and IPFS Implementation of RFID-based Lab Inventory System Monkeypox Skin Lesion Classification Using Transfer Learning Approach A Solution to the Techno-Economic Generation Expansion Planning using Enhanced Dwarf Mongoose Optimization Algorithm Citation Count Prediction Using Different Time Series Analysis Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1