{"title":"Predicting slowdown for networked workstations","authors":"S. Figueira, F. Berman","doi":"10.1109/HPDC.1997.622366","DOIUrl":null,"url":null,"abstract":"Most applications share the resources of networked workstations with other applications. Since system load can vary dramatically, allocation strategies that assume that resources have a constant availability and/or capability are unlikely to promote performance-efficient allocations in practice. In order to best allocate application tasks to machines, it is critical to provide a realistic model of the effects of contention on application performance. In this paper, we present a model that provides an estimate of the slowdown imposed by competing load on applications targeted to high-performance clusters and networks of workstations. The model provides a basis for predicting realistic communication and computation costs and is shown to achieve good accuracy for a set of scientific benchmarks commonly found in high-performance applications.","PeriodicalId":243171,"journal":{"name":"Proceedings. The Sixth IEEE International Symposium on High Performance Distributed Computing (Cat. No.97TB100183)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The Sixth IEEE International Symposium on High Performance Distributed Computing (Cat. No.97TB100183)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPDC.1997.622366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Most applications share the resources of networked workstations with other applications. Since system load can vary dramatically, allocation strategies that assume that resources have a constant availability and/or capability are unlikely to promote performance-efficient allocations in practice. In order to best allocate application tasks to machines, it is critical to provide a realistic model of the effects of contention on application performance. In this paper, we present a model that provides an estimate of the slowdown imposed by competing load on applications targeted to high-performance clusters and networks of workstations. The model provides a basis for predicting realistic communication and computation costs and is shown to achieve good accuracy for a set of scientific benchmarks commonly found in high-performance applications.