Latent fingerprints segmentation based on Rearranged Fourier Subbands

Phumpat Ruangsakul, V. Areekul, Krisada Phromsuthirak, Arucha Rungchokanun
{"title":"Latent fingerprints segmentation based on Rearranged Fourier Subbands","authors":"Phumpat Ruangsakul, V. Areekul, Krisada Phromsuthirak, Arucha Rungchokanun","doi":"10.1109/ICB.2015.7139063","DOIUrl":null,"url":null,"abstract":"In this work, we present a latent fingerprint segmentation algorithm based on spatial-frequency domain analysis. The algorithm arranges the overlapped block-based Fourier coefficients into groups of frequency and orientation subbands, called Rearranged Fourier Subband (RFS). The RFS reveals latent fingerprint spectra in only a limited number of subbands. The algorithm then boosts, sorts, and extracts, from complex background and noise, the latent fingerprint spectra in the RFS subbands. Several experiments are evaluated based on ground truth comparison, feature extraction, and latent matching on the NIST SD27 latent database. Our experimental results show that the proposed algorithm achieves better accuracy compared to those of the published automatic segmentation algorithms.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this work, we present a latent fingerprint segmentation algorithm based on spatial-frequency domain analysis. The algorithm arranges the overlapped block-based Fourier coefficients into groups of frequency and orientation subbands, called Rearranged Fourier Subband (RFS). The RFS reveals latent fingerprint spectra in only a limited number of subbands. The algorithm then boosts, sorts, and extracts, from complex background and noise, the latent fingerprint spectra in the RFS subbands. Several experiments are evaluated based on ground truth comparison, feature extraction, and latent matching on the NIST SD27 latent database. Our experimental results show that the proposed algorithm achieves better accuracy compared to those of the published automatic segmentation algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于重排傅立叶子带的潜在指纹分割
在这项工作中,我们提出了一种基于空频域分析的潜在指纹分割算法。该算法将重叠的基于块的傅里叶系数排列成频率和方向子带组,称为重排傅里叶子带(RFS)。RFS仅在有限的子带中显示潜在指纹光谱。然后,该算法从复杂的背景和噪声中增强、分类和提取RFS子带中的潜在指纹光谱。基于地面真值比较、特征提取和NIST SD27潜在数据库上的潜在匹配,对几个实验进行了评估。实验结果表明,与已有的自动分割算法相比,该算法具有更好的分割精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and robust self-training beard/moustache detection and segmentation Composite sketch recognition via deep network - a transfer learning approach Cross-sensor iris verification applying robust fused segmentation algorithms Multi-modal authentication system for smartphones using face, iris and periocular An efficient approach for clustering face images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1