{"title":"A Seasonal Field Investigation to Perceive Outdoor Thermal Comfort and Thermal Adaption at Malacca Tourist Area- A Pilot Test","authors":"G. Manteghi","doi":"10.20944/PREPRINTS202102.0370.V1","DOIUrl":null,"url":null,"abstract":"Season plays a key role in the development of outdoor spaces for pedestrians in hot humid cities. This research studies the influence of seasonal variations on pedestrian thermal comfort on the pedestrian level by means of meteorology and field observations of selected footpaths in the major tourist area of Malacca. This experiment was carried out on selected clear calm days indicative of each season during the development of a research project, and hourly meteorological transects from 10:00 am to 6:00 pm and questioned 200 respondents on their thermal awareness, comfort, and preferences were conducted. Adaptation, thermal comfort vote, thermal preference, age, season and hour of the day were significant non-meteorological factors, apart from meteorological information. The findings of analyzes showed that the thermal experience and expectation existed and in different seasons people changed perceptions for the outside thermal environment. Almost 80% local tourist and 55 % international tourist was accepted Physiologically Equivalent Temperature (PET) range affected by the local climate and thermal adaptation. The subjective thermal sensation on physiological equivalent temperature generated an acceptable physiological equivalent temperature of 32.6°C to 36.8°C based on the seasonal variations for Malacca tourist zone in Malaysia. These findings shed light on the optimal design of outdoor spaces for increasing the utilization rate. The seasonal variation must be taken into account so that the outdoor landscape design provides more opportunities for different seasons to communicate with the atmosphere and so enhance thermal comfort and utilization.","PeriodicalId":383729,"journal":{"name":"10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/PREPRINTS202102.0370.V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Season plays a key role in the development of outdoor spaces for pedestrians in hot humid cities. This research studies the influence of seasonal variations on pedestrian thermal comfort on the pedestrian level by means of meteorology and field observations of selected footpaths in the major tourist area of Malacca. This experiment was carried out on selected clear calm days indicative of each season during the development of a research project, and hourly meteorological transects from 10:00 am to 6:00 pm and questioned 200 respondents on their thermal awareness, comfort, and preferences were conducted. Adaptation, thermal comfort vote, thermal preference, age, season and hour of the day were significant non-meteorological factors, apart from meteorological information. The findings of analyzes showed that the thermal experience and expectation existed and in different seasons people changed perceptions for the outside thermal environment. Almost 80% local tourist and 55 % international tourist was accepted Physiologically Equivalent Temperature (PET) range affected by the local climate and thermal adaptation. The subjective thermal sensation on physiological equivalent temperature generated an acceptable physiological equivalent temperature of 32.6°C to 36.8°C based on the seasonal variations for Malacca tourist zone in Malaysia. These findings shed light on the optimal design of outdoor spaces for increasing the utilization rate. The seasonal variation must be taken into account so that the outdoor landscape design provides more opportunities for different seasons to communicate with the atmosphere and so enhance thermal comfort and utilization.