Using SCXML to Integrate Semantic Sensor Information into Context-aware User Interfaces

Álvaro Sigüenza, José Luis Blanco Murillo, Jesús Bernat Vercher, Luis A. Hernández Gómez
{"title":"Using SCXML to Integrate Semantic Sensor Information into Context-aware User Interfaces","authors":"Álvaro Sigüenza, José Luis Blanco Murillo, Jesús Bernat Vercher, Luis A. Hernández Gómez","doi":"10.5220/0003116100470059","DOIUrl":null,"url":null,"abstract":"This paper describes a novel architecture to introduce automatic annotation and processing of semantic sensor data within context-aware applications. Based on the well-known state-charts technologies, and represented using W3C SCXML language combined with Semantic Web technologies, our architecture is able to provide enriched higher-level semantic representations of user’s context. This capability to detect and model relevant user situations allows a seamless modeling of the actual interaction situation, which can be integrated during the design of multimodal user interfaces (also based on SCXML) for them to be adequately adapted. Therefore, the final result of this contribution can be described as a flexible context-aware SCXML-based architecture, suitable for both designing a wide range of multimodal context-aware user interfaces, and implementing the automatic enrichment of sensor data, making it available to the entire Semantic Sensor Web","PeriodicalId":340820,"journal":{"name":"Speech Synthesis Workshop","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Synthesis Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003116100470059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes a novel architecture to introduce automatic annotation and processing of semantic sensor data within context-aware applications. Based on the well-known state-charts technologies, and represented using W3C SCXML language combined with Semantic Web technologies, our architecture is able to provide enriched higher-level semantic representations of user’s context. This capability to detect and model relevant user situations allows a seamless modeling of the actual interaction situation, which can be integrated during the design of multimodal user interfaces (also based on SCXML) for them to be adequately adapted. Therefore, the final result of this contribution can be described as a flexible context-aware SCXML-based architecture, suitable for both designing a wide range of multimodal context-aware user interfaces, and implementing the automatic enrichment of sensor data, making it available to the entire Semantic Sensor Web
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用SCXML将语义传感器信息集成到上下文感知的用户界面中
本文描述了一种在上下文感知应用中引入语义传感器数据自动标注和处理的新体系结构。基于众所周知的状态图技术,并使用W3C SCXML语言结合语义Web技术表示,我们的体系结构能够提供丰富的用户上下文的高级语义表示。这种检测和建模相关用户情况的能力允许对实际交互情况进行无缝建模,可以在设计多模态用户界面(也是基于SCXML)期间将其集成,以便对其进行充分调整。因此,这一贡献的最终结果可以被描述为一个灵活的基于上下文感知的scxml架构,既适合设计广泛的多模态上下文感知用户界面,也适合实现传感器数据的自动丰富,使其可用于整个语义传感器Web
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Archiving pushed Inferences from Sensor Data Streams Parallel and cascaded deep neural networks for text-to-speech synthesis Merlin: An Open Source Neural Network Speech Synthesis System A Comparative Study of the Performance of HMM, DNN, and RNN based Speech Synthesis Systems Trained on Very Large Speaker-Dependent Corpora Nonaudible murmur enhancement based on statistical voice conversion and noise suppression with external noise monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1