{"title":"Using Navigation to Improve Recommendations in Real-Time","authors":"Chao-Yuan Wu, C. Alvino, Alex Smola, J. Basilico","doi":"10.1145/2959100.2959174","DOIUrl":null,"url":null,"abstract":"Implicit feedback is a key source of information for many recommendation and personalization approaches. However, using it typically requires multiple episodes of interaction and roundtrips to a recommendation engine. This adds latency and neglects the opportunity of immediate personalization for a user while the user is navigating recommendations. We propose a novel strategy to address the above problem in a principled manner. The key insight is that as we observe a user's interactions, it reveals much more information about her desires. We exploit this by inferring the within-session user intent on-the-fly based on navigation interactions, since they offer valuable clues into a user's current state of mind. Using navigation patterns and adapting recommendations in real-time creates an opportunity to provide more accurate recommendations. By prefetching a larger amount of content, this can be carried out entirely in the client (such as a browser) without added latency. We define a new Bayesian model with an efficient inference algorithm. We demonstrate significant improvements with this novel approach on a real-world, large-scale dataset from Netflix on the problem of adapting the recommendations on a user's homepage.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Implicit feedback is a key source of information for many recommendation and personalization approaches. However, using it typically requires multiple episodes of interaction and roundtrips to a recommendation engine. This adds latency and neglects the opportunity of immediate personalization for a user while the user is navigating recommendations. We propose a novel strategy to address the above problem in a principled manner. The key insight is that as we observe a user's interactions, it reveals much more information about her desires. We exploit this by inferring the within-session user intent on-the-fly based on navigation interactions, since they offer valuable clues into a user's current state of mind. Using navigation patterns and adapting recommendations in real-time creates an opportunity to provide more accurate recommendations. By prefetching a larger amount of content, this can be carried out entirely in the client (such as a browser) without added latency. We define a new Bayesian model with an efficient inference algorithm. We demonstrate significant improvements with this novel approach on a real-world, large-scale dataset from Netflix on the problem of adapting the recommendations on a user's homepage.