{"title":"Importance of Connections in High-Pressure Barricade Design","authors":"J. Kostecki, M. Edel, John Montoya","doi":"10.1115/PVP2018-84765","DOIUrl":null,"url":null,"abstract":"High pressure testing and operation of industrial tools and equipment can be hazardous to personnel and property in the event of an accidental mechanical failure or release of contained pressure. Hazard barricades are commonly installed around equipment to protect nearby personnel or property from projectile impacts or overpressure. The ASME Standard PCC-2 “Repair of Pressure Equipment and Piping” allows the use of hazard barricades for this purpose when a safe standoff distance cannot be satisfied, but it currently provides minimal guidance for engineered design. Other references provide guidance for preventing projectile perforation of a barricade. While perforation prevention is a key component of shield design, properly anchoring a shield and inter-connecting the shield components will make the difference between an effective barricade application and a barrier that could potentially compound the consequences of an accidental failure.\n This paper investigates the importance of engineered structural connections and consideration of global structural response in the design of protective barricades. The structural models focus on impact loading of steel plates and bolted connections, and the results are directly compared to test results in terms of effective barrier response.","PeriodicalId":275459,"journal":{"name":"Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High pressure testing and operation of industrial tools and equipment can be hazardous to personnel and property in the event of an accidental mechanical failure or release of contained pressure. Hazard barricades are commonly installed around equipment to protect nearby personnel or property from projectile impacts or overpressure. The ASME Standard PCC-2 “Repair of Pressure Equipment and Piping” allows the use of hazard barricades for this purpose when a safe standoff distance cannot be satisfied, but it currently provides minimal guidance for engineered design. Other references provide guidance for preventing projectile perforation of a barricade. While perforation prevention is a key component of shield design, properly anchoring a shield and inter-connecting the shield components will make the difference between an effective barricade application and a barrier that could potentially compound the consequences of an accidental failure. This paper investigates the importance of engineered structural connections and consideration of global structural response in the design of protective barricades. The structural models focus on impact loading of steel plates and bolted connections, and the results are directly compared to test results in terms of effective barrier response.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连接在高压路障设计中的重要性
工业工具和设备的高压测试和操作在发生意外机械故障或释放压力时可能对人员和财产造成危险。危险路障通常安装在设备周围,以保护附近的人员或财产免受抛射物撞击或超压。ASME标准PCC-2“压力设备和管道的维修”允许在不能满足安全距离的情况下使用危险障碍物,但目前它对工程设计提供了最小的指导。其他参考文献提供了防止弹丸击穿障碍物的指南。虽然防射孔是屏蔽设计的关键组成部分,但正确地锚定屏蔽和连接屏蔽组件将决定是有效的屏蔽应用,还是可能加剧意外失效后果的屏蔽。本文探讨了工程结构连接的重要性以及在防护路障设计中考虑整体结构响应的问题。该结构模型主要研究钢板和螺栓连接的冲击载荷,并直接与试验结果进行有效屏障响应的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Modified Microstructure-Based Creep Damage Model for Considering Prior Low Cycle Fatigue Damage Effects Defect Localization for Pressure Vessel Based on Circumferential Guided Waves: An Experimental Study Advanced High Strength Martensitic Stainless Steels for High Pressure Equipment The Effect of a Low Constraint Geometry on Measured T0 Values for a Nuclear Reactor Pressure Vessel Ferritic Steel Investigation Into Applications of Local Failure Criterion for X70 Pipeline With Corrosion Defect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1