{"title":"Path-based scheduling in a hardware compiler","authors":"Ruirui Gu, A. Forin, Richard Neil Pittman","doi":"10.1109/DATE.2010.5457011","DOIUrl":null,"url":null,"abstract":"Hardware acceleration uses hardware to perform some software functions faster than it is possible on a processor. This paper proposes to optimize hardware acceleration using path-based scheduling algorithms derived from dataflow static scheduling, and from control-flow state machines. These techniques are applied to the MIPS-to-Verilog (M2V) compiler, which translates blocks of MIPS machine code into a hardware design represented in Verilog for reconfigurable platforms. The simulation results demonstrate a factor of 22 in performance improvement for simple self-looped basic blocks over the base compiler.","PeriodicalId":432902,"journal":{"name":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2010.5457011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Hardware acceleration uses hardware to perform some software functions faster than it is possible on a processor. This paper proposes to optimize hardware acceleration using path-based scheduling algorithms derived from dataflow static scheduling, and from control-flow state machines. These techniques are applied to the MIPS-to-Verilog (M2V) compiler, which translates blocks of MIPS machine code into a hardware design represented in Verilog for reconfigurable platforms. The simulation results demonstrate a factor of 22 in performance improvement for simple self-looped basic blocks over the base compiler.