Breast cancer detection using a multi-objective binary Krill Herd algorithm

A. Mohammadi, M. S. Abadeh, Hamidreza Keshavarz
{"title":"Breast cancer detection using a multi-objective binary Krill Herd algorithm","authors":"A. Mohammadi, M. S. Abadeh, Hamidreza Keshavarz","doi":"10.1109/ICBME.2014.7043907","DOIUrl":null,"url":null,"abstract":"In this paper, an algorithm is presented for extracting fuzzy rules from the Breast Cancer dataset. To extract fuzzy rules, an imitation based evolutionary algorithm is used called Krill Herd (KH). The KH algorithm is converted to a binary algorithm here, and is used for the classification problem with innovation, named Binary Krill Herd-based Fuzzy Rule Miner (BKH-FRM). Choosing the best krill and local best of the Krills in each generation are performed according to a new multi-objective function. This algorithm achieves a higher accuracy than others with few rules and little sum of the rules lengths.","PeriodicalId":434822,"journal":{"name":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2014.7043907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, an algorithm is presented for extracting fuzzy rules from the Breast Cancer dataset. To extract fuzzy rules, an imitation based evolutionary algorithm is used called Krill Herd (KH). The KH algorithm is converted to a binary algorithm here, and is used for the classification problem with innovation, named Binary Krill Herd-based Fuzzy Rule Miner (BKH-FRM). Choosing the best krill and local best of the Krills in each generation are performed according to a new multi-objective function. This algorithm achieves a higher accuracy than others with few rules and little sum of the rules lengths.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多目标二元Krill Herd算法的乳腺癌检测
本文提出了一种从乳腺癌数据集中提取模糊规则的算法。为了提取模糊规则,使用了一种基于模仿的进化算法,称为Krill Herd (KH)。本文将KH算法转化为二进制算法,并创新地用于分类问题,命名为基于二进制磷虾群的模糊规则挖掘器(binary Krill Herd-based Fuzzy Rule Miner, BKH-FRM)。根据新的多目标函数选择每一代最优磷虾和局部最优磷虾。该算法以较少的规则和较小的规则长度和达到了比其他算法更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A time-delay parallel cascade identification system for predicting jaw movements Automated decomposition of needle EMG signal using STFT and wavelet transforms Sparse representation-based super-resolution for diffusion weighted images Investigation of Brain Default Network's activation in autism spectrum disorders using Group Independent Component Analysis Pragmatic modeling of chaotic dynamical systems through artificial neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1