Radar signal detection in non-Gaussian distributed clutter by Bayesian predictive densities

H. Yamaguchi, A. Kajiwara, S. Hayashi
{"title":"Radar signal detection in non-Gaussian distributed clutter by Bayesian predictive densities","authors":"H. Yamaguchi, A. Kajiwara, S. Hayashi","doi":"10.1109/RADAR.2005.1435834","DOIUrl":null,"url":null,"abstract":"We present a coherent radar signal detection scheme in non-Gaussian distributed clutter and its simulation results. In this scheme the clutter is modeled by compound Gaussian distribution and unknown parameters, i.e. target amplitude and clutter, are estimated based on a posteriori distribution with a noninformative prior. Also a technique called Bayesian predictive densities is employed. In order to investigate the performance, we carried out the Monte Carlo simulation and its results are also compared with conventional detection schemes such as maximum likelihood and maximum a posteriori estimator. The simulation results show its usefulness.","PeriodicalId":444253,"journal":{"name":"IEEE International Radar Conference, 2005.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Radar Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2005.1435834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a coherent radar signal detection scheme in non-Gaussian distributed clutter and its simulation results. In this scheme the clutter is modeled by compound Gaussian distribution and unknown parameters, i.e. target amplitude and clutter, are estimated based on a posteriori distribution with a noninformative prior. Also a technique called Bayesian predictive densities is employed. In order to investigate the performance, we carried out the Monte Carlo simulation and its results are also compared with conventional detection schemes such as maximum likelihood and maximum a posteriori estimator. The simulation results show its usefulness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯预测密度的非高斯分布杂波雷达信号检测
提出了一种非高斯分布杂波条件下的相干雷达信号检测方案及其仿真结果。该方案采用复合高斯分布对杂波进行建模,并基于非信息先验的后验分布估计未知参数,即目标振幅和杂波。还采用了一种称为贝叶斯预测密度的技术。为了研究其性能,我们进行了蒙特卡罗模拟,并将其结果与传统的检测方案(如最大似然估计和最大后验估计)进行了比较。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-high performance, low-power, data parallel radar implementations Cloud profiling radar for the CloudSat mission Field test of bistatic forward-looking synthetic aperture radar Wideband array antenna concept Advances in non-linear apodization for irregularly shaped and sparse two dimensional apertures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1