{"title":"Design of asynchronous circuit primitives using MOS current-mode logic (MCML)","authors":"T. W. Kwan, M. Shams","doi":"10.1109/ICM.2004.1434236","DOIUrl":null,"url":null,"abstract":"This paper introduces and compares two topologies for the C-element in MCML and two topologies for double-edge-triggered flip-flop in MCML. Based on the simulation results, an asynchronous MCML C-element dissipates four times less power than conventional static CMOS C-element at the same throughout of 1.9 GHz. Also, MCML double-edge-triggered flip-flop runs up to three times faster than the conventional static CMOS counterpart at the same power level. All the circuits are implemented in a standard 0.18 /spl mu/m CMOS technology.","PeriodicalId":359193,"journal":{"name":"Proceedings. The 16th International Conference on Microelectronics, 2004. ICM 2004.","volume":"434 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The 16th International Conference on Microelectronics, 2004. ICM 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2004.1434236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper introduces and compares two topologies for the C-element in MCML and two topologies for double-edge-triggered flip-flop in MCML. Based on the simulation results, an asynchronous MCML C-element dissipates four times less power than conventional static CMOS C-element at the same throughout of 1.9 GHz. Also, MCML double-edge-triggered flip-flop runs up to three times faster than the conventional static CMOS counterpart at the same power level. All the circuits are implemented in a standard 0.18 /spl mu/m CMOS technology.