Assessment of the e-AR sensor for gait analysis of Parkinson;s Disease patients

D. Jarchi, Amy Peters, Benny P. L. Lo, E. Kalliolia, I. D. Giulio, P. Limousin, B. Day, Guang-Zhong Yang
{"title":"Assessment of the e-AR sensor for gait analysis of Parkinson;s Disease patients","authors":"D. Jarchi, Amy Peters, Benny P. L. Lo, E. Kalliolia, I. D. Giulio, P. Limousin, B. Day, Guang-Zhong Yang","doi":"10.1109/BSN.2015.7299396","DOIUrl":null,"url":null,"abstract":"This paper analyses gait patterns of patients with Parkinson's Disease (PD) based on the acceleration data given by an e-AR sensor. Ten PD patients wearing the e-AR sensor walked along a 7m walkway and each session contained 16 repeated trials. An iterative algorithm has been proposed to produce robust estimations in the case of measurement noise and short-duration of gait signals. Step-frequency as a gait parameter derived from the estimated heel-contacts is calculated and validated using the CODA motion-capture system. Intersession variability of step-frequency for each patient and the overall variability across patients demonstrate a good agreement between estimations from the e-AR and CODA systems.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper analyses gait patterns of patients with Parkinson's Disease (PD) based on the acceleration data given by an e-AR sensor. Ten PD patients wearing the e-AR sensor walked along a 7m walkway and each session contained 16 repeated trials. An iterative algorithm has been proposed to produce robust estimations in the case of measurement noise and short-duration of gait signals. Step-frequency as a gait parameter derived from the estimated heel-contacts is calculated and validated using the CODA motion-capture system. Intersession variability of step-frequency for each patient and the overall variability across patients demonstrate a good agreement between estimations from the e-AR and CODA systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
e-AR传感器在帕金森病患者步态分析中的应用评估
本文基于e-AR传感器提供的加速度数据,分析了帕金森病患者的步态模式。10名PD患者戴着e-AR传感器沿着7米长的人行道行走,每一阶段包括16次重复试验。提出了一种迭代算法,在测量噪声和步态信号持续时间短的情况下产生鲁棒估计。利用CODA运动捕捉系统计算并验证了步进频率作为步态参数。每个患者的步进频率的间歇变异性和患者之间的总体变异性表明,e-AR和CODA系统的估计之间具有良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a smart insole for ambulatory assessment of gait Anticipatory signals in kinematics and muscle activity during functional grasp and release Piezoelectrets and their applications as wearable physiological-signal sensors and energy harvesters Automated guidance from physiological sensing to reduce thermal-work strain levels on a novel task An unsupervised approach for gait-based authentication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1