A Quantum Machine Learning Algorithm Provides Hyperfast Training of Business Finance

Alfredo Lacayo Evertsz, Lizelia Bravo Boza
{"title":"A Quantum Machine Learning Algorithm Provides Hyperfast Training of Business Finance","authors":"Alfredo Lacayo Evertsz, Lizelia Bravo Boza","doi":"10.2139/ssrn.3518838","DOIUrl":null,"url":null,"abstract":"We show how tensor network theory and deep learning theory can be combined to provide a ground-state network (Orus, 2014) of financial information for hyperfast training of business finance. The resulting minimal-complexity structure encodes an infinite number of probable outcomes into a finite graphical alphabet of 12 potential dynamic relations, called double-entries; the pixels of financial information. Using the proposed many-layered (Serb & Prodromakis, 2019), financial wave function (Schrodinger, 1935), as a computational resource (Biamonte, 2016), allows hyperfast processing of financial information, one pixel at a time; see fig. 1. This reveals a highly entangled architecture (Levine, et al., 2019), where complexity scales linearly, not exponentially (Huggins, et al., 2018). The new algorithm trains people on the fundamentals of business finance in about 10 hours; a process that would take at least one year with the conventional scheme. Results are based on solid empirical evidence.","PeriodicalId":289043,"journal":{"name":"InfoSciRN: Information Networks (Topic)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"InfoSciRN: Information Networks (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3518838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show how tensor network theory and deep learning theory can be combined to provide a ground-state network (Orus, 2014) of financial information for hyperfast training of business finance. The resulting minimal-complexity structure encodes an infinite number of probable outcomes into a finite graphical alphabet of 12 potential dynamic relations, called double-entries; the pixels of financial information. Using the proposed many-layered (Serb & Prodromakis, 2019), financial wave function (Schrodinger, 1935), as a computational resource (Biamonte, 2016), allows hyperfast processing of financial information, one pixel at a time; see fig. 1. This reveals a highly entangled architecture (Levine, et al., 2019), where complexity scales linearly, not exponentially (Huggins, et al., 2018). The new algorithm trains people on the fundamentals of business finance in about 10 hours; a process that would take at least one year with the conventional scheme. Results are based on solid empirical evidence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子机器学习算法为企业财务提供超高速训练
我们展示了张量网络理论和深度学习理论如何结合起来,为企业财务的超高速训练提供财务信息的基态网络(Orus, 2014)。由此产生的最小复杂性结构将无限数量的可能结果编码为12个潜在动态关系的有限图形字母表,称为双条目;财务信息的像素。使用提出的多层(塞族和Prodromakis, 2019),金融波函数(薛定谔,1935)作为计算资源(Biamonte, 2016),允许超高速处理金融信息,一次一个像素;见图1。这揭示了一个高度纠缠的架构(Levine, et al., 2019),其中复杂性呈线性扩展,而不是指数扩展(Huggins, et al., 2018)。新算法在大约10个小时内训练人们了解商业金融的基础知识;按照传统方案,这一过程至少需要一年时间。结果基于可靠的经验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Railway Safety Protection with Android Mobile Application for 5G New Radio Network Data Ecosystems for Protecting European Citizens' Digital Rights A Quantum Machine Learning Algorithm Provides Hyperfast Training of Business Finance Data Security in Cloud Computing A Review on Security Challenges and Issues in Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1