HyperTuner: Visual Analytics for Hyperparameter Tuning by Professionals

Tianyi Li, G. Convertino, Wenbo Wang, Haley Most, Tristan Zajonc, Yi-Hsun Tsai
{"title":"HyperTuner: Visual Analytics for Hyperparameter Tuning by Professionals","authors":"Tianyi Li, G. Convertino, Wenbo Wang, Haley Most, Tristan Zajonc, Yi-Hsun Tsai","doi":"10.1109/MLUI52768.2018.10075647","DOIUrl":null,"url":null,"abstract":"While training a machine learning model, data scientists often need to determine some hyperparameters to set up the model. The values of hyperparameters configure the structure and other characteristics of the model and can significantly influence the training result. However, given the complexity of the model algorithms and the training processes, identifying a sweet spot in the hyperparameter space for a specific problem can be challenging. This paper characterizes user requirements for hyperparameter tuning and proposes a prototype system to provide model-agnostic support. We conducted interviews with data science practitioners in industry to collect user requirements and identify opportunities for leveraging interactive visual support. We present HyperTuner, a prototype system that supports hyperparameter search and analysis via interactive visual analytics. The design treats models as black boxes with the hyperparameters and data as inputs, and the predictions and performance metrics as outputs. We discuss our preliminary evaluation results, where the data science practitioners deem HyperTuner as useful and desired to help gain insights into the influence of hyperparameters on model performance and convergence. The design also triggered additional requirements such as involving more advanced support for automated tuning and debugging.","PeriodicalId":421877,"journal":{"name":"2018 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLUI52768.2018.10075647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

While training a machine learning model, data scientists often need to determine some hyperparameters to set up the model. The values of hyperparameters configure the structure and other characteristics of the model and can significantly influence the training result. However, given the complexity of the model algorithms and the training processes, identifying a sweet spot in the hyperparameter space for a specific problem can be challenging. This paper characterizes user requirements for hyperparameter tuning and proposes a prototype system to provide model-agnostic support. We conducted interviews with data science practitioners in industry to collect user requirements and identify opportunities for leveraging interactive visual support. We present HyperTuner, a prototype system that supports hyperparameter search and analysis via interactive visual analytics. The design treats models as black boxes with the hyperparameters and data as inputs, and the predictions and performance metrics as outputs. We discuss our preliminary evaluation results, where the data science practitioners deem HyperTuner as useful and desired to help gain insights into the influence of hyperparameters on model performance and convergence. The design also triggered additional requirements such as involving more advanced support for automated tuning and debugging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HyperTuner:由专业人员进行超参数调优的可视化分析
在训练机器学习模型时,数据科学家通常需要确定一些超参数来建立模型。超参数的值决定了模型的结构和其他特征,对训练结果有显著影响。然而,考虑到模型算法和训练过程的复杂性,在超参数空间中为特定问题识别最佳点可能具有挑战性。本文描述了用户对超参数调优的需求,并提出了一个原型系统来提供与模型无关的支持。我们与行业中的数据科学从业者进行了访谈,以收集用户需求并确定利用交互式可视化支持的机会。我们提出HyperTuner,一个原型系统,支持超参数搜索和分析,通过交互式可视化分析。该设计将模型视为黑盒,将超参数和数据作为输入,将预测和性能指标作为输出。我们讨论了我们的初步评估结果,其中数据科学从业者认为HyperTuner是有用的,并且希望有助于深入了解超参数对模型性能和收敛的影响。该设计还引发了额外的需求,例如涉及对自动调优和调试的更高级支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Human-in-the-Loop Software Platform HyperTuner: Visual Analytics for Hyperparameter Tuning by Professionals A Bidirectional Pipeline for Semantic Interaction ModelSpace: Visualizing the Trails of Data Models in Visual Analytics Systems Providing Contextual Assistance in Response to Frustration in Visual Analytics Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1