The Complexity of Distributions

Emanuele Viola
{"title":"The Complexity of Distributions","authors":"Emanuele Viola","doi":"10.1137/100814998","DOIUrl":null,"url":null,"abstract":"Complexity theory typically studies the complexity of computing a function $h(x) : \\zo^m \\to \\zo^n$ of a given input $x$. We advocate the study of the complexity of generating the distribution $h(x)$ for uniform $x$, given random bits. Our main results are: (1) Any function $f : \\zo^\\ell \\to \\zon$ such that (i) each output bit $f_i$ depends on $o(\\log n)$ input bits, and (ii) $\\ell \\le \\log_2 \\binom{n}{\\alpha n} + n^{0.99}$, has output distribution $f(U)$ at statistical distance $\\ge 1 - 1/n^{0.49}$ from the uniform distribution over $n$-bit strings of hamming weight $\\alpha n$. We also prove lower bounds for generating $(X,b(X))$ for boolean $b$, and in the case in which each bit $f_i$ is a small-depth decision tree. These lower bounds seem to be the first of their kind, the proofs use anti-concentration results for the sum of random variables. (2) Lower bounds for generating distributions imply succinct data structures lower bounds. As a corollary of (1), we obtain the first lower bound for the membership problem of representing a set $S \\subseteq [n]$ of size $\\alpha n$, in the case where $1/\\alpha$ is a power of $2$: If queries ``$i \\in S$?'' are answered by non-adaptively probing $o(\\log n)$ bits, then the representation uses $\\ge \\log_2 \\binom{n}{\\alpha n} + \\Omega(\\log n)$ bits. (3) Upper bounds complementing the bounds in (1) for various settings of parameters. (4) Uniform randomized $\\acz$ circuits of $\\poly(n)$ size and depth $d = O(1)$ with error $\\e$ can be simulated by uniform randomized $\\acz$ circuits of $\\poly(n)$ size and depth $d+1$ with error $\\e + o(1)$ using $\\le (\\log n)^{O( \\log \\log n)}$ random bits. Previous derandomizations [Ajtai and Wigderson '85, Nisan '91] increase the depth by a constant factor, or else have poor seed length.","PeriodicalId":228365,"journal":{"name":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/100814998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

Complexity theory typically studies the complexity of computing a function $h(x) : \zo^m \to \zo^n$ of a given input $x$. We advocate the study of the complexity of generating the distribution $h(x)$ for uniform $x$, given random bits. Our main results are: (1) Any function $f : \zo^\ell \to \zon$ such that (i) each output bit $f_i$ depends on $o(\log n)$ input bits, and (ii) $\ell \le \log_2 \binom{n}{\alpha n} + n^{0.99}$, has output distribution $f(U)$ at statistical distance $\ge 1 - 1/n^{0.49}$ from the uniform distribution over $n$-bit strings of hamming weight $\alpha n$. We also prove lower bounds for generating $(X,b(X))$ for boolean $b$, and in the case in which each bit $f_i$ is a small-depth decision tree. These lower bounds seem to be the first of their kind, the proofs use anti-concentration results for the sum of random variables. (2) Lower bounds for generating distributions imply succinct data structures lower bounds. As a corollary of (1), we obtain the first lower bound for the membership problem of representing a set $S \subseteq [n]$ of size $\alpha n$, in the case where $1/\alpha$ is a power of $2$: If queries ``$i \in S$?'' are answered by non-adaptively probing $o(\log n)$ bits, then the representation uses $\ge \log_2 \binom{n}{\alpha n} + \Omega(\log n)$ bits. (3) Upper bounds complementing the bounds in (1) for various settings of parameters. (4) Uniform randomized $\acz$ circuits of $\poly(n)$ size and depth $d = O(1)$ with error $\e$ can be simulated by uniform randomized $\acz$ circuits of $\poly(n)$ size and depth $d+1$ with error $\e + o(1)$ using $\le (\log n)^{O( \log \log n)}$ random bits. Previous derandomizations [Ajtai and Wigderson '85, Nisan '91] increase the depth by a constant factor, or else have poor seed length.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布的复杂性
复杂性理论通常研究计算给定输入$x$的函数$h(x) : \zo^m \to \zo^n$的复杂性。我们提倡研究对于给定随机比特的均匀$x$生成分布$h(x)$的复杂性。我们的主要结果是:(1)任何函数$f : \zo^\ell \to \zon$这样(i)每个输出位$f_i$依赖于$o(\log n)$输入位,以及(ii) $\ell \le \log_2 \binom{n}{\alpha n} + n^{0.99}$,在统计距离$\ge 1 - 1/n^{0.49}$上的输出分布$f(U)$与汉明权值$\alpha n$的$n$位串的均匀分布。我们还证明了布尔$b$生成$(X,b(X))$的下界,其中每个位$f_i$是一个小深度决策树。这些下界似乎是同类中的第一个,证明使用了随机变量和的反集中结果。(2)生成分布的下界意味着简洁的数据结构下界。作为(1)的推论,我们得到了表示大小为$\alpha n$的集合$S \subseteq [n]$的隶属性问题的第一个下界,在$1/\alpha$是$2$的幂次的情况下:如果查询“$i \in S$ ?”由非自适应探测$o(\log n)$位回答,则表示使用$\ge \log_2 \binom{n}{\alpha n} + \Omega(\log n)$位。(3)各参数设置的上界与(1)的上界互补。(4)均匀随机化$\acz$电路的$\poly(n)$大小和深度$d = O(1)$有误差$\e$可以通过均匀随机化$\acz$电路的$\poly(n)$大小和深度$d+1$有误差$\e + o(1)$使用$\le (\log n)^{O( \log \log n)}$随机位来模拟。以前的非随机化[Ajtai和Wigderson '85, Nisan '91]以常数因子增加深度,否则种子长度就很差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Computational Complexity of Coin Flipping The Monotone Complexity of k-clique on Random Graphs Local List Decoding with a Constant Number of Queries Agnostically Learning under Permutation Invariant Distributions Pseudorandom Generators for Regular Branching Programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1