Machine Learning for Algorithmic Trading and Trade Schedule Optimization

R. Kissell, Jungsun “Sunny” Bae
{"title":"Machine Learning for Algorithmic Trading and Trade Schedule Optimization","authors":"R. Kissell, Jungsun “Sunny” Bae","doi":"10.3905/jot.2018.13.4.138","DOIUrl":null,"url":null,"abstract":"In this paper we present a machine learning technique that can be used in conjunction with multi-period trade schedule optimization used in program trading. The technique is based on an artificial neural network (ANN) model that determines a better starting solution for the non-linear optimization routine. This technique provides calculation time improvements that are 30% faster for small baskets (n = 10 stocks), 50% faster for baskets of (n = 100 stocks) and up to 70% faster for large baskets (n ≥ 300 stocks). Unlike many of the industry approaches that use heuristics and numerical approximation, our machine learning approach solves for the exact problem and provides a dramatic improvement in calculation time.","PeriodicalId":254660,"journal":{"name":"The Journal of Trading","volume":"38 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Trading","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jot.2018.13.4.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present a machine learning technique that can be used in conjunction with multi-period trade schedule optimization used in program trading. The technique is based on an artificial neural network (ANN) model that determines a better starting solution for the non-linear optimization routine. This technique provides calculation time improvements that are 30% faster for small baskets (n = 10 stocks), 50% faster for baskets of (n = 100 stocks) and up to 70% faster for large baskets (n ≥ 300 stocks). Unlike many of the industry approaches that use heuristics and numerical approximation, our machine learning approach solves for the exact problem and provides a dramatic improvement in calculation time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
算法交易和交易计划优化的机器学习
在本文中,我们提出了一种机器学习技术,可以与程序交易中使用的多周期交易计划优化相结合。该技术基于人工神经网络(ANN)模型,为非线性优化程序确定更好的启动解。这种技术提供了计算时间的改进,对于小篮子(n = 10只股票)快30%,对于篮子(n = 100只股票)快50%,对于大篮子(n≥300只股票)快70%。与许多使用启发式和数值近似的行业方法不同,我们的机器学习方法解决了精确的问题,并在计算时间上提供了显着的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phantom Liquidity and High-Frequency Quoting COMMENTARY: Commentary on “If Best Execution Is a Process, What Does That Process Look Like?”1 Editor’s Letter Machine Learning for Algorithmic Trading and Trade Schedule Optimization COMMENTARY: A Market Structure That Fits the Needs of Portfolio Managers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1