{"title":"Machine Learning for Algorithmic Trading and Trade Schedule Optimization","authors":"R. Kissell, Jungsun “Sunny” Bae","doi":"10.3905/jot.2018.13.4.138","DOIUrl":null,"url":null,"abstract":"In this paper we present a machine learning technique that can be used in conjunction with multi-period trade schedule optimization used in program trading. The technique is based on an artificial neural network (ANN) model that determines a better starting solution for the non-linear optimization routine. This technique provides calculation time improvements that are 30% faster for small baskets (n = 10 stocks), 50% faster for baskets of (n = 100 stocks) and up to 70% faster for large baskets (n ≥ 300 stocks). Unlike many of the industry approaches that use heuristics and numerical approximation, our machine learning approach solves for the exact problem and provides a dramatic improvement in calculation time.","PeriodicalId":254660,"journal":{"name":"The Journal of Trading","volume":"38 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Trading","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jot.2018.13.4.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper we present a machine learning technique that can be used in conjunction with multi-period trade schedule optimization used in program trading. The technique is based on an artificial neural network (ANN) model that determines a better starting solution for the non-linear optimization routine. This technique provides calculation time improvements that are 30% faster for small baskets (n = 10 stocks), 50% faster for baskets of (n = 100 stocks) and up to 70% faster for large baskets (n ≥ 300 stocks). Unlike many of the industry approaches that use heuristics and numerical approximation, our machine learning approach solves for the exact problem and provides a dramatic improvement in calculation time.