DryadOpt: Branch-and-Bound on Distributed Data-Parallel Execution Engines

M. Budiu, D. Delling, Renato F. Werneck
{"title":"DryadOpt: Branch-and-Bound on Distributed Data-Parallel Execution Engines","authors":"M. Budiu, D. Delling, Renato F. Werneck","doi":"10.1109/IPDPS.2011.121","DOIUrl":null,"url":null,"abstract":"We introduce Dryad Opt, a library that enables massively parallel and distributed execution of optimization algorithms for solving hard problems. Dryad Opt performs an exhaustive search of the solution space using branch-and-bound, by recursively splitting the original problem into many simpler sub problems. It uses both parallelism (at the core level) and distributed execution (at the machine level). Dryad Opt provides a simple yet powerful interface to its users, who only need to implement sequential code to process individual sub problems (either by solving them in full or generating new sub problems). The parallelism and distribution are handled automatically by Dryad Opt, and are invisible to the user. The distinctive feature of our system is that it is implemented on top of Dryad LINQ, a distributed data-parallel execution engine similar to Hadoop and Map-Reduce. Despite the fact that these engines offer a constrained application model, with restricted communication patterns, our experiments show that careful design choices allow Dryad Opt to scale linearly with the number of machines, with very little overhead.","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

We introduce Dryad Opt, a library that enables massively parallel and distributed execution of optimization algorithms for solving hard problems. Dryad Opt performs an exhaustive search of the solution space using branch-and-bound, by recursively splitting the original problem into many simpler sub problems. It uses both parallelism (at the core level) and distributed execution (at the machine level). Dryad Opt provides a simple yet powerful interface to its users, who only need to implement sequential code to process individual sub problems (either by solving them in full or generating new sub problems). The parallelism and distribution are handled automatically by Dryad Opt, and are invisible to the user. The distinctive feature of our system is that it is implemented on top of Dryad LINQ, a distributed data-parallel execution engine similar to Hadoop and Map-Reduce. Despite the fact that these engines offer a constrained application model, with restricted communication patterns, our experiments show that careful design choices allow Dryad Opt to scale linearly with the number of machines, with very little overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DryadOpt:分布式数据并行执行引擎上的分支绑定
我们将介绍Dryad Opt,一个支持大规模并行和分布式执行优化算法以解决难题的库。Dryad Opt通过递归地将原始问题分解为许多更简单的子问题,使用分支定界对解决方案空间进行详尽的搜索。它同时使用并行性(在核心级)和分布式执行(在机器级)。Dryad Opt为用户提供了一个简单而强大的界面,用户只需要实现顺序代码来处理单个子问题(通过完全解决它们或生成新的子问题)。并行性和分布由Dryad Opt自动处理,并且对用户是不可见的。我们的系统的独特之处在于它是在Dryad LINQ上实现的,这是一个类似于Hadoop和Map-Reduce的分布式数据并行执行引擎。尽管这些引擎提供了一个受约束的应用程序模型,具有受限制的通信模式,但我们的实验表明,仔细的设计选择允许Dryad Opt随机器数量线性扩展,并且开销很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Semantic Concept Detection on Manycore Platforms for Multimedia Mining Two-Stage Tridiagonal Reduction for Dense Symmetric Matrices Using Tile Algorithms on Multicore Architectures A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields Smith-Waterman Alignment of Huge Sequences with GPU in Linear Space CheCL: Transparent Checkpointing and Process Migration of OpenCL Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1