{"title":"A Transit Signal Priority Algorithm under Connected Vehicle Environment","authors":"Kaidi Yang, S. I. Guler, M. Menéndez","doi":"10.1109/ITSC.2015.19","DOIUrl":null,"url":null,"abstract":"Transit signal priority is a cost-effective way to improve transit operations and reliability. Connected vehicles provide more precise and detailed information on vehicle movements, thus can be beneficial for transit signal priority. This paper proposes a transit signal priority algorithm using connected vehicle information. Simulation is conducted for different total flow, bus arrivals, bus occupancy and penetration rates. Results show that this algorithm successfully reduces the total passenger delay. It is also shown that this algorithm is not sensitive to the assumed occupancy, hence does not require accurate information on bus occupancy. Additionally, this algorithm significantly reduces the delay of buses with minimal increase to the delay of cars in the conflicting approach.","PeriodicalId":124818,"journal":{"name":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2015.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Transit signal priority is a cost-effective way to improve transit operations and reliability. Connected vehicles provide more precise and detailed information on vehicle movements, thus can be beneficial for transit signal priority. This paper proposes a transit signal priority algorithm using connected vehicle information. Simulation is conducted for different total flow, bus arrivals, bus occupancy and penetration rates. Results show that this algorithm successfully reduces the total passenger delay. It is also shown that this algorithm is not sensitive to the assumed occupancy, hence does not require accurate information on bus occupancy. Additionally, this algorithm significantly reduces the delay of buses with minimal increase to the delay of cars in the conflicting approach.