LIUM-MIRACL Participation in the MADAR Arabic Dialect Identification Shared Task

Saméh Kchaou, Fethi Bougares, Lamia Hadrich Belguith
{"title":"LIUM-MIRACL Participation in the MADAR Arabic Dialect Identification Shared Task","authors":"Saméh Kchaou, Fethi Bougares, Lamia Hadrich Belguith","doi":"10.18653/v1/W19-4625","DOIUrl":null,"url":null,"abstract":"This paper describes the joint participation of the LIUM and MIRACL Laboratories at the Arabic dialect identification challenge of the MADAR Shared Task (Bouamor et al., 2019) conducted during the Fourth Arabic Natural Language Processing Workshop (WANLP 2019). We participated to the Travel Domain Dialect Identification subtask. We built several systems and explored different techniques including conventional machine learning methods and deep learning algorithms. Deep learning approaches did not perform well on this task. We experimented several classification systems and we were able to identify the dialect of an input sentence with an F1-score of 65.41% on the official test set using only the training data supplied by the shared task organizers.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper describes the joint participation of the LIUM and MIRACL Laboratories at the Arabic dialect identification challenge of the MADAR Shared Task (Bouamor et al., 2019) conducted during the Fourth Arabic Natural Language Processing Workshop (WANLP 2019). We participated to the Travel Domain Dialect Identification subtask. We built several systems and explored different techniques including conventional machine learning methods and deep learning algorithms. Deep learning approaches did not perform well on this task. We experimented several classification systems and we were able to identify the dialect of an input sentence with an F1-score of 65.41% on the official test set using only the training data supplied by the shared task organizers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LIUM-MIRACL参与MADAR阿拉伯语方言识别共享任务
本文描述了LIUM和MIRACL实验室在第四届阿拉伯自然语言处理研讨会(WANLP 2019)期间共同参与MADAR共享任务的阿拉伯方言识别挑战(Bouamor等人,2019)。我们参加了旅游领域方言识别子任务。我们建立了几个系统,并探索了不同的技术,包括传统的机器学习方法和深度学习算法。深度学习方法在这个任务上表现不佳。我们实验了几种分类系统,仅使用共享任务组织者提供的训练数据,我们就能够在官方测试集上识别输入句子的方言,f1得分为65.41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Morphology-aware Word-Segmentation in Dialectal Arabic Adaptation of Neural Machine Translation Arabic Tweet-Act: Speech Act Recognition for Arabic Asynchronous Conversations En-Ar Bilingual Word Embeddings without Word Alignment: Factors Effects Simple But Not Naïve: Fine-Grained Arabic Dialect Identification Using Only N-Grams The SMarT Classifier for Arabic Fine-Grained Dialect Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1