Improving the Performance of Text Categorization Using Automatic Summarization

Xiao-yu Jiang, Xiao-zhong Fan, Zhi-Fei Wang, Ke-liang Jia
{"title":"Improving the Performance of Text Categorization Using Automatic Summarization","authors":"Xiao-yu Jiang, Xiao-zhong Fan, Zhi-Fei Wang, Ke-liang Jia","doi":"10.1109/ICCMS.2009.29","DOIUrl":null,"url":null,"abstract":"In order to reduce the dimensionality of feature vector space and reduce the computing complexity of categorization, each document of the train set is summarized automatically and two approaches to text categorization based on these summaries are proposed: in the first approach, the text summarization is directly used for feature selection and categorization instead of the original text; in the second approach, each summary is used to select and weight features for each document, and free texts are classified using KNN algorithm. Experimental results show that the two proposed methods using automatic summarization can not only reduce the time of classifier training, but also improve the performance of text categorization.","PeriodicalId":325964,"journal":{"name":"2009 International Conference on Computer Modeling and Simulation","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMS.2009.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In order to reduce the dimensionality of feature vector space and reduce the computing complexity of categorization, each document of the train set is summarized automatically and two approaches to text categorization based on these summaries are proposed: in the first approach, the text summarization is directly used for feature selection and categorization instead of the original text; in the second approach, each summary is used to select and weight features for each document, and free texts are classified using KNN algorithm. Experimental results show that the two proposed methods using automatic summarization can not only reduce the time of classifier training, but also improve the performance of text categorization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用自动摘要改进文本分类的性能
为了降低特征向量空间的维数,降低分类的计算复杂度,对训练集的每个文档进行自动摘要,提出了两种基于这些摘要的文本分类方法:第一种方法是直接使用文本摘要代替原始文本进行特征选择和分类;在第二种方法中,使用每个摘要来选择和加权每个文档的特征,并使用KNN算法对自由文本进行分类。实验结果表明,本文提出的两种自动摘要方法不仅可以减少分类器的训练时间,而且可以提高文本分类的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Sample of Stochastic Simulation of an Automatic Teller Machine Multiresolution Animated Models Generation Based on Deformation Distance Analysis Study on Technique of 3D Imaging-Based DEM and Massive Orthograph Airspace Capacity Management Based on Control Workload and Coupling Constraints between Airspaces Self-adaptive Wheel-side Independent Driving System with Active Suspension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1