Non-Convex Sparse Deviation Modeling Via Generative Models

Yaxi Yang, Hailin Wang, Haiquan Qiu, Jianjun Wang, Yao Wang
{"title":"Non-Convex Sparse Deviation Modeling Via Generative Models","authors":"Yaxi Yang, Hailin Wang, Haiquan Qiu, Jianjun Wang, Yao Wang","doi":"10.1109/ICASSP39728.2021.9414170","DOIUrl":null,"url":null,"abstract":"In this paper, the generative model is used to introduce the structural properties of the signal to replace the common sparse hypothesis, and a non-convex compressed sensing sparse deviation model based on the generative model (ℓq-Gen) is proposed. By establishing ℓq variant of the restricted isometry property (q-RIP) and Set-Restricted Eigenvalue Condition (q-S-REC), the error upper bound of the optimal decoder is derived when the recovered signal is within the sparse deviation range of the generator. Furthermore, it is proved that the Gaussian matrix satisfying a certain number of measurements is sufficient to ensure a good recovery for the generating function with high probability. Finally, a series of experiments are carried out to verify the effectiveness and superiority of the ℓq-Gen model.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the generative model is used to introduce the structural properties of the signal to replace the common sparse hypothesis, and a non-convex compressed sensing sparse deviation model based on the generative model (ℓq-Gen) is proposed. By establishing ℓq variant of the restricted isometry property (q-RIP) and Set-Restricted Eigenvalue Condition (q-S-REC), the error upper bound of the optimal decoder is derived when the recovered signal is within the sparse deviation range of the generator. Furthermore, it is proved that the Gaussian matrix satisfying a certain number of measurements is sufficient to ensure a good recovery for the generating function with high probability. Finally, a series of experiments are carried out to verify the effectiveness and superiority of the ℓq-Gen model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生成模型的非凸稀疏偏差建模
本文利用生成模型引入信号的结构性质来代替常见的稀疏假设,提出了一种基于生成模型(q-Gen)的非凸压缩感知稀疏偏差模型。通过建立受限等距特性(q- rip)的q变异体和集限制特征值条件(q- s - rec),推导了恢复信号在发生器稀疏偏差范围内时最优解码器的误差上界。进一步证明了满足一定测量数的高斯矩阵足以保证生成函数具有高概率的良好恢复。最后,通过一系列实验验证了该模型的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subspace Oddity - Optimization on Product of Stiefel Manifolds for EEG Data Recognition of Dynamic Hand Gesture Based on Mm-Wave Fmcw Radar Micro-Doppler Signatures Multi-Decoder Dprnn: Source Separation for Variable Number of Speakers Topic-Aware Dialogue Generation with Two-Hop Based Graph Attention On The Accuracy Limit of Joint Time-Delay/Doppler/Acceleration Estimation with a Band-Limited Signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1