Multi-group particle swarm optimization with random redistribution

Naufal Suryanto, C. Ikuta, D. Pramadihanto
{"title":"Multi-group particle swarm optimization with random redistribution","authors":"Naufal Suryanto, C. Ikuta, D. Pramadihanto","doi":"10.1109/KCIC.2017.8228445","DOIUrl":null,"url":null,"abstract":"Particle Swarm Optimization (PSO) is fast and popular algorithm to find the optimum value of non-linear and multi-dimensional function. However, it often easily trapped into local optima because the particles move closer to the best particle quickly. This paper purposes a new algorithm called Multi-Group Particle Swarm Optimization with Random Redistribution (MGRR-PSO) that tried to solve the weakness of standard PSO. MGRR-PSO combines two groups of PSO with opposite acceleration coefficients. In addition, some particles are redistributed when they are trapped in local optima. Experimental studies on 5 benchmark functions with 50-dimensions and 100-dimensions show that the MGRR-PSO can solve the problems that can't be solved by original PSO with better performance.","PeriodicalId":117148,"journal":{"name":"2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KCIC.2017.8228445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Particle Swarm Optimization (PSO) is fast and popular algorithm to find the optimum value of non-linear and multi-dimensional function. However, it often easily trapped into local optima because the particles move closer to the best particle quickly. This paper purposes a new algorithm called Multi-Group Particle Swarm Optimization with Random Redistribution (MGRR-PSO) that tried to solve the weakness of standard PSO. MGRR-PSO combines two groups of PSO with opposite acceleration coefficients. In addition, some particles are redistributed when they are trapped in local optima. Experimental studies on 5 benchmark functions with 50-dimensions and 100-dimensions show that the MGRR-PSO can solve the problems that can't be solved by original PSO with better performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机再分配的多群粒子群优化
粒子群算法(PSO)是求解非线性、多维函数最优值的一种快速、流行的算法。然而,它往往很容易陷入局部最优,因为粒子更快地向最佳粒子靠近。本文提出了一种基于随机再分布的多群粒子群优化算法(MGRR-PSO),试图解决标准粒子群优化算法的不足。MGRR-PSO结合了两组加速度系数相反的PSO。此外,当粒子被困在局部最优时,它们会重新分布。对50维和100维5个基准函数的实验研究表明,MGRR-PSO可以较好地解决原粒子群算法无法解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fuzzy system for quality assurance of crowdsourced wildlife observation geodata Semantic spatial weighted regression for realizing spatial correlation of deforestation effect on soil degradation UAV-based multispectral aerial image retrieval using spectral feature and semantic computing Disaster detection from aerial imagery with convolutional neural network A realtime sensing-data-triggered news article provision system with 5D world map
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1