{"title":"A unifying analysis of error exponents for MIMO channels with application to multiple-scattering","authors":"G. Alfano, C. Chiasserini, A. Nordio, Siyuan Zhou","doi":"10.1109/ISWCS.2015.7454355","DOIUrl":null,"url":null,"abstract":"Expressions for Gallager's Random Coding Error Exponent (RCEE) and the corresponding Expurgated Error Exponent (EEE) are derived in a unifying framework, as functions only of the squared singular values of the channel matrix. The results encompass spatially Kronecker-correlated Rayleigh channels (whose error exponents expressions are already present in the literature), line of sight MIMO systems, multiple-scattering channels, multi-hop amplify and forward MIMO channels with non-noisy relays and noisy destination. As an instance of application of our framework, we consider a multiple-scattering Rayleigh MIMO channels, with an arbitrary but finite number of scattering stages and channel state information (CSI) available at the receiver only. In this scenario, we evaluate closed-form expressions for both RCEE and EEE in terms of Meijer's G functions.","PeriodicalId":383105,"journal":{"name":"2015 International Symposium on Wireless Communication Systems (ISWCS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2015.7454355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Expressions for Gallager's Random Coding Error Exponent (RCEE) and the corresponding Expurgated Error Exponent (EEE) are derived in a unifying framework, as functions only of the squared singular values of the channel matrix. The results encompass spatially Kronecker-correlated Rayleigh channels (whose error exponents expressions are already present in the literature), line of sight MIMO systems, multiple-scattering channels, multi-hop amplify and forward MIMO channels with non-noisy relays and noisy destination. As an instance of application of our framework, we consider a multiple-scattering Rayleigh MIMO channels, with an arbitrary but finite number of scattering stages and channel state information (CSI) available at the receiver only. In this scenario, we evaluate closed-form expressions for both RCEE and EEE in terms of Meijer's G functions.