{"title":"Occurrence typing modulo theories","authors":"A. Kent, D. Kempe, Sam Tobin-Hochstadt","doi":"10.1145/2980983.2908091","DOIUrl":null,"url":null,"abstract":"We present a new type system combining occurrence typing---a technique previously used to type check programs in dynamically-typed languages such as Racket, Clojure, and JavaScript---with dependent refinement types. We demonstrate that the addition of refinement types allows the integration of arbitrary solver-backed reasoning about logical propositions from external theories. By building on occurrence typing, we can add our enriched type system as a natural extension of Typed Racket, reusing its core while increasing its expressiveness. The result is a well-tested type system with a conservative, decidable core in which types may depend on a small but extensible set of program terms. In addition to describing our design, we present the following: a formal model and proof of correctness; a strategy for integrating new theories, with specific examples including linear arithmetic and bitvectors; and an evaluation in the context of the full Typed Racket implementation. Specifically, we take safe vector operations as a case study, examining all vector accesses in a 56,000 line corpus of Typed Racket programs. Our system is able to prove that 50% of these are safe with no new annotations, and with a few annotations and modifications we capture more than 70%.","PeriodicalId":178839,"journal":{"name":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2980983.2908091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
We present a new type system combining occurrence typing---a technique previously used to type check programs in dynamically-typed languages such as Racket, Clojure, and JavaScript---with dependent refinement types. We demonstrate that the addition of refinement types allows the integration of arbitrary solver-backed reasoning about logical propositions from external theories. By building on occurrence typing, we can add our enriched type system as a natural extension of Typed Racket, reusing its core while increasing its expressiveness. The result is a well-tested type system with a conservative, decidable core in which types may depend on a small but extensible set of program terms. In addition to describing our design, we present the following: a formal model and proof of correctness; a strategy for integrating new theories, with specific examples including linear arithmetic and bitvectors; and an evaluation in the context of the full Typed Racket implementation. Specifically, we take safe vector operations as a case study, examining all vector accesses in a 56,000 line corpus of Typed Racket programs. Our system is able to prove that 50% of these are safe with no new annotations, and with a few annotations and modifications we capture more than 70%.