Using rhythmic features for Japanese spoken term detection

Naoyuki Kanda, Ryu Takeda, Y. Obuchi
{"title":"Using rhythmic features for Japanese spoken term detection","authors":"Naoyuki Kanda, Ryu Takeda, Y. Obuchi","doi":"10.1109/SLT.2012.6424217","DOIUrl":null,"url":null,"abstract":"A new rescoring method for spoken term detection (STD) is proposed. Phoneme-based close-matching techniques have been used because of their ability to detect out-of-vocabulary (OOV) queries. To improve the accuracy of phoneme-based techniques, rescoring techniques have been used to accurately re-rank the results from phoneme-based close-matching; however, conventional rescoring techniques based on an utterance verification model still produce many false detection results. To further improve the accuracy, in this study, several features representing the “naturalness” (or “abnormality”) of duration of phonemes/syllables in detected candidates of a keyword are proposed. These features are incorporated into a conventional rescoring technique using logistic regression. Experimental results with a 604-hour Japanese speech corpus indicated that combining the rhythmic features achieved a further relative error reduction of 8.9% compared to a conventional rescoring technique.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A new rescoring method for spoken term detection (STD) is proposed. Phoneme-based close-matching techniques have been used because of their ability to detect out-of-vocabulary (OOV) queries. To improve the accuracy of phoneme-based techniques, rescoring techniques have been used to accurately re-rank the results from phoneme-based close-matching; however, conventional rescoring techniques based on an utterance verification model still produce many false detection results. To further improve the accuracy, in this study, several features representing the “naturalness” (or “abnormality”) of duration of phonemes/syllables in detected candidates of a keyword are proposed. These features are incorporated into a conventional rescoring technique using logistic regression. Experimental results with a 604-hour Japanese speech corpus indicated that combining the rhythmic features achieved a further relative error reduction of 8.9% compared to a conventional rescoring technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用节奏特征进行日语口语词汇检测
提出了一种新的语音词检测(STD)评分方法。基于音素的紧密匹配技术之所以被使用,是因为它们能够检测出词汇外(OOV)查询。为了提高基于音素的匹配技术的准确性,采用评分技术对基于音素的紧密匹配结果进行准确的重新排序;然而,传统的基于话语验证模型的评分技术仍然会产生许多错误的检测结果。为了进一步提高准确率,本研究提出了几个表征关键词候选词中音素/音节持续时间“自然”(或“异常”)的特征。这些特征被整合到使用逻辑回归的传统评分技术中。基于604小时日语语音语料库的实验结果表明,与传统的评分技术相比,结合节奏特征的相对误差进一步降低了8.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining criteria for the detection of incorrect entries of non-native speech in the context of foreign language learning Two-layer mutually reinforced random walk for improved multi-party meeting summarization Train&align: A new online tool for automatic phonetic alignment Automatic detection and correction of syntax-based prosody annotation errors Word segmentation through cross-lingual word-to-phoneme alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1