The forecast for corrosion of reinforcing steel based on RBF neural network

Yan Liu, Shengli Zhao, Chen Yi
{"title":"The forecast for corrosion of reinforcing steel based on RBF neural network","authors":"Yan Liu, Shengli Zhao, Chen Yi","doi":"10.1109/ICWAPR.2009.5207406","DOIUrl":null,"url":null,"abstract":"By analyzing the causes and influencing factors of corrosion of reinforcing steel, the RBF neural network model for predicting reinforcement corrosion is founded. And actual data is analyzed through an example and results are compared with the BP network model. The testing results show that RBF network model for predicting reinforcement corrosion can become a new effective assessment model with better prediction results and higher recognition precision.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

By analyzing the causes and influencing factors of corrosion of reinforcing steel, the RBF neural network model for predicting reinforcement corrosion is founded. And actual data is analyzed through an example and results are compared with the BP network model. The testing results show that RBF network model for predicting reinforcement corrosion can become a new effective assessment model with better prediction results and higher recognition precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RBF神经网络的钢筋腐蚀预测
通过分析钢筋腐蚀的原因及影响因素,建立了预测钢筋腐蚀的RBF神经网络模型。并通过算例对实际数据进行了分析,并与BP网络模型进行了比较。试验结果表明,RBF网络模型预测钢筋腐蚀具有较好的预测效果和较高的识别精度,是一种有效的新型评价模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Laplacian Support Vector Machines Intelligent computerized fabric texture recognition system by using Grey-based neural fuzzy clustering A new cooperative algorithm for signal detection Improved algorithm of the Back Propagation neural network and its application in fault diagnosis of air-cooling condenser HSICT: A method for romoving highlight and shading in color image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1