Brain-Inspired Memory Architecture for Sparse Nonlocal and Unstructured Workloads

Y. Katayama
{"title":"Brain-Inspired Memory Architecture for Sparse Nonlocal and Unstructured Workloads","authors":"Y. Katayama","doi":"10.1145/3075564.3075597","DOIUrl":null,"url":null,"abstract":"This paper presents a brain-inspired von Neumann memory architecture for sparse, nonlocal, and unstructured workloads. Memory at each node contains selectable windows for optimistic shared access. A low-latency multiple access control for various policies is provided inside the local memory controller, using conditional deferred queuing with shared address list entries and associated lock bits. When combined with a memory-side cache, the proposed architecture is expected to transparently accelerate and flexibly scale the performance of sparse, nonlocal, and unstructured workloads by better regulating the data-access pipelining across local and remote memory requests.","PeriodicalId":398898,"journal":{"name":"Proceedings of the Computing Frontiers Conference","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Computing Frontiers Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3075564.3075597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a brain-inspired von Neumann memory architecture for sparse, nonlocal, and unstructured workloads. Memory at each node contains selectable windows for optimistic shared access. A low-latency multiple access control for various policies is provided inside the local memory controller, using conditional deferred queuing with shared address list entries and associated lock bits. When combined with a memory-side cache, the proposed architecture is expected to transparently accelerate and flexibly scale the performance of sparse, nonlocal, and unstructured workloads by better regulating the data-access pipelining across local and remote memory requests.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏非局部和非结构化工作负载的脑启发内存架构
本文提出了一种针对稀疏、非局部和非结构化工作负载的受大脑启发的冯·诺伊曼内存架构。每个节点上的内存包含可选择的窗口,用于乐观共享访问。本地内存控制器内部为各种策略提供了低延迟的多重访问控制,使用具有共享地址列表项和相关锁位的条件延迟队列。当与内存端缓存结合使用时,通过更好地调节跨本地和远程内存请求的数据访问管道,所提出的体系结构有望透明地加速和灵活地扩展稀疏、非本地和非结构化工作负载的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Support for Secure Stream Processing in Cloud Environments Private inter-network routing for Wireless Sensor Networks and the Internet of Things Analytical Performance Modeling and Validation of Intel's Xeon Phi Architecture Design of S-boxes Defined with Cellular Automata Rules Cloud Workload Prediction by Means of Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1