Characterizing Piezoelectric Cantilevers for Vibration Energy Harvesting under Ambient Conditions

Ran Wei, Peng Wang, W. Ko, P. Feng
{"title":"Characterizing Piezoelectric Cantilevers for Vibration Energy Harvesting under Ambient Conditions","authors":"Ran Wei, Peng Wang, W. Ko, P. Feng","doi":"10.1109/ENERGYTECH.2013.6645299","DOIUrl":null,"url":null,"abstract":"We report on measurement and modeling of dynamic energy harvesters based on oscillating piezoelectric cantilevers, along with careful calibration of energy conversion properties of such devices in their dynamic responses. We employ thin-film lead zirconate titanate (PZT)-based cantilevers fabricated by laser micromachining, with efficient proof masses enabled by a heavy alloy with a low melting temperature (65°C) for tuning frequency and damping. By measuring devices with different circuit parameters, and analyzing the energy conversion in time-domain oscillations, we show a model that quantitatively reveals the effects of the loading circuit for energy harvesting. We also show the effects of device dimensions on their vibrations and converted voltage output waveforms. In harvesting vibrational energy through cycles of oscillations (in 80Hz-1kHz devices), energy conversion efficiency as high as 25% has been attained.","PeriodicalId":154402,"journal":{"name":"2013 IEEE Energytech","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Energytech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYTECH.2013.6645299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We report on measurement and modeling of dynamic energy harvesters based on oscillating piezoelectric cantilevers, along with careful calibration of energy conversion properties of such devices in their dynamic responses. We employ thin-film lead zirconate titanate (PZT)-based cantilevers fabricated by laser micromachining, with efficient proof masses enabled by a heavy alloy with a low melting temperature (65°C) for tuning frequency and damping. By measuring devices with different circuit parameters, and analyzing the energy conversion in time-domain oscillations, we show a model that quantitatively reveals the effects of the loading circuit for energy harvesting. We also show the effects of device dimensions on their vibrations and converted voltage output waveforms. In harvesting vibrational energy through cycles of oscillations (in 80Hz-1kHz devices), energy conversion efficiency as high as 25% has been attained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境条件下压电悬臂梁振动能量收集特性研究
我们报告了基于振动压电悬臂梁的动态能量采集器的测量和建模,以及此类设备在其动态响应中的能量转换特性的仔细校准。我们采用激光微加工制造的薄膜锆钛酸铅(PZT)基悬臂梁,具有高效的防护质量,由低熔化温度(65°C)的重合金实现,用于调谐频率和阻尼。通过测量具有不同电路参数的器件,并分析时域振荡中的能量转换,我们建立了一个模型,定量地揭示了负载电路对能量收集的影响。我们还展示了器件尺寸对其振动和转换电压输出波形的影响。在通过振荡周期(80Hz-1kHz设备)收集振动能量时,能量转换效率高达25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy exchange model of PV-based battery switch stations based on battery swap service and power distribution Flux weakening control for surface mount permanent magnet synchronous motor (PMSM) drives with rapid load and speed varying applications Toward an Energy-Proportional Building prospect: Evaluation and analysis of the energy consumption in a green building testbed Commercialization of high 600V GaN-on-silicon power HEMTs and diodes On time desynchronization attack against IEEE 1588 protocol in power grid systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1