Fast linear algebra-based triangle counting with KokkosKernels

Michael M. Wolf, Mehmet Deveci, Jonathan W. Berry, S. Hammond, S. Rajamanickam
{"title":"Fast linear algebra-based triangle counting with KokkosKernels","authors":"Michael M. Wolf, Mehmet Deveci, Jonathan W. Berry, S. Hammond, S. Rajamanickam","doi":"10.1109/HPEC.2017.8091043","DOIUrl":null,"url":null,"abstract":"Triangle counting serves as a key building block for a set of important graph algorithms in network science. In this paper, we address the IEEE HPEC Static Graph Challenge problem of triangle counting, focusing on obtaining the best parallel performance on a single multicore node. Our implementation uses a linear algebra-based approach to triangle counting that has grown out of work related to our miniTri data analytics miniapplication [1] and our efforts to pose graph algorithms in the language of linear algebra. We leverage KokkosKernels to implement this approach efficiently on multicore architectures. Our performance results are competitive with the fastest known graph traversal-based approaches and are significantly faster than the Graph Challenge reference implementations, up to 670,000 times faster than the C++ reference and 10,000 times faster than the Python reference on a single Intel Haswell node.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

Triangle counting serves as a key building block for a set of important graph algorithms in network science. In this paper, we address the IEEE HPEC Static Graph Challenge problem of triangle counting, focusing on obtaining the best parallel performance on a single multicore node. Our implementation uses a linear algebra-based approach to triangle counting that has grown out of work related to our miniTri data analytics miniapplication [1] and our efforts to pose graph algorithms in the language of linear algebra. We leverage KokkosKernels to implement this approach efficiently on multicore architectures. Our performance results are competitive with the fastest known graph traversal-based approaches and are significantly faster than the Graph Challenge reference implementations, up to 670,000 times faster than the C++ reference and 10,000 times faster than the Python reference on a single Intel Haswell node.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速线性代数为基础的三角形计数与KokkosKernels
三角形计数是网络科学中一组重要图算法的关键组成部分。在本文中,我们解决了三角形计数的IEEE HPEC静态图挑战问题,重点是在单个多核节点上获得最佳并行性能。我们的实现使用基于线性代数的方法来进行三角形计数,这是与我们的miniTri数据分析迷你应用程序[1]相关的工作,以及我们在线性代数语言中提出图形算法的努力。我们利用KokkosKernels在多核架构上有效地实现了这种方法。我们的性能结果与已知最快的基于图遍历的方法相媲美,并且比graph Challenge参考实现要快得多,比c++参考实现快67万倍,比单个Intel Haswell节点上的Python参考实现快1万倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimized task graph mapping on a many-core neuromorphic supercomputer Software-defined extreme scale networks for bigdata applications Power-aware computing: Measurement, control, and performance analysis for Intel Xeon Phi xDCI, a data science cyberinfrastructure for interdisciplinary research Leakage energy reduction for hard real-time caches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1