Toxicity Detection Using State of the Art Natural Language Methodologies

Enes Faruk Keskin, Erkut Açikgöz, Gulustan Dogan
{"title":"Toxicity Detection Using State of the Art Natural Language Methodologies","authors":"Enes Faruk Keskin, Erkut Açikgöz, Gulustan Dogan","doi":"10.1109/ICCRE57112.2023.10155587","DOIUrl":null,"url":null,"abstract":"In this paper, the studies carried out to detect objectionable expressions in any text will be explained. Experiments were performed with Sentence transformers, supervised machine learning algorithms, and Bert transformer architecture trained in English, and the results were observed. To prepare the dataset used in the experiments, the natural language processing and machine learning methodologies of the toxic and non-toxic contents in the labeled text data obtained from the Kaggle platform are explained, and then the methods and performances of the models trained using this dataset are summarized in this paper.","PeriodicalId":285164,"journal":{"name":"2023 8th International Conference on Control and Robotics Engineering (ICCRE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Control and Robotics Engineering (ICCRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCRE57112.2023.10155587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the studies carried out to detect objectionable expressions in any text will be explained. Experiments were performed with Sentence transformers, supervised machine learning algorithms, and Bert transformer architecture trained in English, and the results were observed. To prepare the dataset used in the experiments, the natural language processing and machine learning methodologies of the toxic and non-toxic contents in the labeled text data obtained from the Kaggle platform are explained, and then the methods and performances of the models trained using this dataset are summarized in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用最先进的自然语言方法进行毒性检测
在本文中,将解释为检测任何文本中的令人反感的表达而进行的研究。使用英语训练的句子转换器、监督机器学习算法和Bert转换器架构进行实验,并观察结果。为了准备实验数据集,本文首先阐述了从Kaggle平台获取的标记文本数据中有毒和无毒内容的自然语言处理和机器学习方法,然后总结了使用该数据集训练的模型的方法和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Particle Filtering Strategy for Terrain Aided Navigation Based on MBES Information An EMG-Based Teleoperation System with Small Hand Based on a Dual-Arm Task Model Statics and Dynamics Simulation Analysis of the Industrial Robot Arm Structure Based on the Generative Design Toxicity Detection Using State of the Art Natural Language Methodologies Better Multi-step Time Series Prediction Using Sparse and Deep Echo State Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1