Painometry

Hoang Truong, Nam Bui, Zohreh Raghebi, Marta Čeko, Nhat Pham, Phuc Nguyen, Anh Nguyen, Taeho Kim, Katrina Siegfried, Evan Stene, Taylor Tvrdy, Logan Weinman, T. Payne, D. Burke, Thang Dinh, Sidney K. D’Mello, F. Banaei-Kashani, Tor D. Wager, P. Goldstein, Tam N. Vu
{"title":"Painometry","authors":"Hoang Truong, Nam Bui, Zohreh Raghebi, Marta Čeko, Nhat Pham, Phuc Nguyen, Anh Nguyen, Taeho Kim, Katrina Siegfried, Evan Stene, Taylor Tvrdy, Logan Weinman, T. Payne, D. Burke, Thang Dinh, Sidney K. D’Mello, F. Banaei-Kashani, Tor D. Wager, P. Goldstein, Tam N. Vu","doi":"10.1145/3386901.3389022","DOIUrl":null,"url":null,"abstract":"Over 50 million people undergo surgeries each year in the United States, with over 70% of them filling opioid prescriptions within one week of the surgery. Due to the highly addictive nature of these opiates, a post-surgical window is a crucial time for pain management to ensure accurate prescription of opioids. Drug prescription nowadays relies primarily on self-reported pain levels to determine the frequency and dosage of pain drug. Patient pain self-reports are, however, influenced by subjective pain tolerance, memories of past painful episodes, current context, and the patient's integrity in reporting their pain level. Therefore, objective measures of pain are needed to better inform pain management. This paper explores a wearable system, named Painometry, which objectively quantifies users' pain perception based-on multiple physiological signals and facial expressions of pain. We propose a sensing technique, called sweep impedance profiling (SIP), to capture the movement of the facial muscle corrugator supercilii, one of the important physiological expressions of pain. We deploy SIP together with other biosignals, including electroencephalography (EEG), photoplethysmogram (PPG), and galvanic skin response (GSR) for pain quantification. From the anatomical and physiological correlations of pain with these signals, we designed Painometry, a multimodality sensing system, which can accurately quantify different levels of pain safely. We prototyped Painometry by building a custom hardware, firmware, and associated software. Our evaluations use the prototype on 23 subjects, which corresponds to 8832 data points from 276 minutes of an IRB-approved experimental pain-inducing protocol. Using leave-one-out cross-validation to estimate performance on unseen data shows 89.5% and 76.7% accuracy of quantification under 3 and 4 pain states, respectively.","PeriodicalId":345029,"journal":{"name":"Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386901.3389022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Over 50 million people undergo surgeries each year in the United States, with over 70% of them filling opioid prescriptions within one week of the surgery. Due to the highly addictive nature of these opiates, a post-surgical window is a crucial time for pain management to ensure accurate prescription of opioids. Drug prescription nowadays relies primarily on self-reported pain levels to determine the frequency and dosage of pain drug. Patient pain self-reports are, however, influenced by subjective pain tolerance, memories of past painful episodes, current context, and the patient's integrity in reporting their pain level. Therefore, objective measures of pain are needed to better inform pain management. This paper explores a wearable system, named Painometry, which objectively quantifies users' pain perception based-on multiple physiological signals and facial expressions of pain. We propose a sensing technique, called sweep impedance profiling (SIP), to capture the movement of the facial muscle corrugator supercilii, one of the important physiological expressions of pain. We deploy SIP together with other biosignals, including electroencephalography (EEG), photoplethysmogram (PPG), and galvanic skin response (GSR) for pain quantification. From the anatomical and physiological correlations of pain with these signals, we designed Painometry, a multimodality sensing system, which can accurately quantify different levels of pain safely. We prototyped Painometry by building a custom hardware, firmware, and associated software. Our evaluations use the prototype on 23 subjects, which corresponds to 8832 data points from 276 minutes of an IRB-approved experimental pain-inducing protocol. Using leave-one-out cross-validation to estimate performance on unseen data shows 89.5% and 76.7% accuracy of quantification under 3 and 4 pain states, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DigiScatter Key sensor discovery for quality audit of air sensor networks EMO SonicPrint: a generally adoptable and secure fingerprint biometrics in smart devices Osprey demo: a mmwave approach to tire wear sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1