Non-uniform partition strategies for indexing high-dimensional data with different distributions

Ben Wang, Q. Gan
{"title":"Non-uniform partition strategies for indexing high-dimensional data with different distributions","authors":"Ben Wang, Q. Gan","doi":"10.1109/MMSE.2003.1254417","DOIUrl":null,"url":null,"abstract":"Efficient high-dimensional data indexing algorithms are crucial for image retrieval in large datasets. One of the state-of-the-art indexing methods is vector approximation file (VA-file), which indexes high-dimensional data by filtering feature vectors so that only a small fraction of them are visited in the search process. The VA-file uses a partition strategy that divides the data space on every dimension to make each partition equally full and assigns a same number of bits to each dimension. However, the strategy is not efficient to image datasets where the number of different vector components (granularity) in each dimension is largely diverse. The first two partition strategies are implemented in a practical way according to the description from the original VA-file method. The other two nonuniform partition strategies are proposed to resolve the problems of reduplicate coordinates and uniform bits assignment for each dimension, which assign more bits to represent dimensions with more vector components. Experimental results have shown that these strategies largely improve the performance of the VA-file for nonuniform datasets in terms of query time and filtering efficiency.","PeriodicalId":322357,"journal":{"name":"Fifth International Symposium on Multimedia Software Engineering, 2003. Proceedings.","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Symposium on Multimedia Software Engineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSE.2003.1254417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Efficient high-dimensional data indexing algorithms are crucial for image retrieval in large datasets. One of the state-of-the-art indexing methods is vector approximation file (VA-file), which indexes high-dimensional data by filtering feature vectors so that only a small fraction of them are visited in the search process. The VA-file uses a partition strategy that divides the data space on every dimension to make each partition equally full and assigns a same number of bits to each dimension. However, the strategy is not efficient to image datasets where the number of different vector components (granularity) in each dimension is largely diverse. The first two partition strategies are implemented in a practical way according to the description from the original VA-file method. The other two nonuniform partition strategies are proposed to resolve the problems of reduplicate coordinates and uniform bits assignment for each dimension, which assign more bits to represent dimensions with more vector components. Experimental results have shown that these strategies largely improve the performance of the VA-file for nonuniform datasets in terms of query time and filtering efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
索引不同分布的高维数据的非统一分区策略
高效的高维数据索引算法是大数据集图像检索的关键。矢量逼近文件(vector approximation file, VA-file)是目前最先进的索引方法之一,它通过过滤特征向量对高维数据进行索引,使搜索过程中只访问其中的一小部分特征向量。va文件使用分区策略,在每个维度上划分数据空间,使每个分区同样满,并为每个维度分配相同数量的位。然而,对于每个维度上不同向量分量(粒度)的数量差异很大的图像数据集,该策略并不有效。前两种分区策略根据原始VA-file方法的描述以实用的方式实现。另外提出了两种非均匀划分策略,以解决每维的重复坐标和均匀位分配问题,即分配更多的位来表示具有更多向量分量的维数。实验结果表明,这些策略在查询时间和过滤效率方面大大提高了va文件在非均匀数据集上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Searching the regulatory protein binding site by steepest ascent algorithm ConKMeL: a contextual knowledge management framework to support intelligent multimedia e-learning Non-uniform partition strategies for indexing high-dimensional data with different distributions Theories of learning: a computer game perspective Using neuro-fuzzy techniques based on a two-stage mapping model for concept-based image database indexing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1