Multi-taper MFCC features for speaker verification using I-vectors

Md. Jahangir Alam, T. Kinnunen, P. Kenny, P. Ouellet, D. O'Shaughnessy
{"title":"Multi-taper MFCC features for speaker verification using I-vectors","authors":"Md. Jahangir Alam, T. Kinnunen, P. Kenny, P. Ouellet, D. O'Shaughnessy","doi":"10.1109/ASRU.2011.6163886","DOIUrl":null,"url":null,"abstract":"This paper studies the low-variance multi-taper mel-frequency cepstral coefficient (MFCC) features in the state-of-the-art speaker verification. The MFCC features are usually computed using a Hamming-windowed DFT spectrum. Windowing reduces the bias of the spectrum but variance remains high. Recently, low-variance multi-taper MFCC features were studied in speaker verification with promising preliminary results on the NIST 2002 SRE data using a simple GMM-UBM recognizer. In this study our goal is to validate those findings using a up-to-date i-vector classifier on the latest NIST 2010 SRE data. Our experiment on the telephone (det5) and microphone speech (det1, det2, det3 and det4) indicate that the multi-taper approaches perform better than the conventional Hamming window technique.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This paper studies the low-variance multi-taper mel-frequency cepstral coefficient (MFCC) features in the state-of-the-art speaker verification. The MFCC features are usually computed using a Hamming-windowed DFT spectrum. Windowing reduces the bias of the spectrum but variance remains high. Recently, low-variance multi-taper MFCC features were studied in speaker verification with promising preliminary results on the NIST 2002 SRE data using a simple GMM-UBM recognizer. In this study our goal is to validate those findings using a up-to-date i-vector classifier on the latest NIST 2010 SRE data. Our experiment on the telephone (det5) and microphone speech (det1, det2, det3 and det4) indicate that the multi-taper approaches perform better than the conventional Hamming window technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多锥度MFCC功能扬声器验证使用i向量
本文研究了低方差多锥度mel-frequency倒频谱系数(MFCC)特征在最新扬声器验证中的应用。MFCC特征通常是使用汉明窗DFT谱来计算的。加窗减少了光谱的偏差,但方差仍然很高。近年来,利用简单的GMM-UBM识别器在NIST 2002 SRE数据上研究了低方差多锥度MFCC特征在说话人验证中的应用,并取得了良好的初步结果。在这项研究中,我们的目标是在最新的NIST 2010 SRE数据上使用最新的i向量分类器来验证这些发现。我们在电话(det5)和麦克风语音(det1, det2, det3和det4)上的实验表明,多锥度方法比传统的汉明窗技术表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying feature bagging for more accurate and robust automated speaking assessment Towards choosing better primes for spoken dialog systems Accent level adjustment in bilingual Thai-English text-to-speech synthesis Fast speaker diarization using a high-level scripting language Evaluating prosodic features for automated scoring of non-native read speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1