ANN Modeling for Prediction of Velocity in Channel Bends

P. Durge, P. Nagarnaik
{"title":"ANN Modeling for Prediction of Velocity in Channel Bends","authors":"P. Durge, P. Nagarnaik","doi":"10.1109/ICETET.2008.219","DOIUrl":null,"url":null,"abstract":"The flow in a channel bend is spiral or helical. It is a movement of water particles in the flow direction. Many researchers have stated mathematical equations to predict velocity in the flow direction in the channel bend. These equations are based on simplified assumptions. The ANN is a viable alternative to predict longitudinal velocity in channel bend. It builds the model by estimating suitable approximating function of the available input/output samples. Once such relationship is established & validated, it can be used for the prediction of the future system behavior. The paper aims at developing Artificial Neural Network model, namely Multilayer Perceptron (MLP). It is found that MLP model is capable to predict velocity in the channel bend with accuracy.","PeriodicalId":269929,"journal":{"name":"2008 First International Conference on Emerging Trends in Engineering and Technology","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on Emerging Trends in Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETET.2008.219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The flow in a channel bend is spiral or helical. It is a movement of water particles in the flow direction. Many researchers have stated mathematical equations to predict velocity in the flow direction in the channel bend. These equations are based on simplified assumptions. The ANN is a viable alternative to predict longitudinal velocity in channel bend. It builds the model by estimating suitable approximating function of the available input/output samples. Once such relationship is established & validated, it can be used for the prediction of the future system behavior. The paper aims at developing Artificial Neural Network model, namely Multilayer Perceptron (MLP). It is found that MLP model is capable to predict velocity in the channel bend with accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
河道弯道速度预测的人工神经网络建模
河道弯曲处的水流呈螺旋状或螺旋状。它是水粒子在流动方向上的运动。许多研究者已经建立了数学方程来预测河道弯道内水流方向的速度。这些方程式是以简化的假设为基础的。人工神经网络是预测航道弯曲纵向速度的一种可行的替代方法。它通过估计可用输入/输出样本的合适近似函数来建立模型。一旦建立并验证了这种关系,它就可以用于预测未来系统的行为。本文旨在开发人工神经网络模型,即多层感知器(MLP)。结果表明,MLP模型能够较准确地预测通道弯道内的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic Analysis of MPLS and Non MPLS Network including MPLS Signaling Protocols and Traffic Distribution in OSPF and MPLS Texture and Wavelet-Based Spoof Fingerprint Detection for Fingerprint Biometric Systems Cmos Mixed Signal Design of Fuzzy Logic Based Systems QoS Aware Stable path Routing (QASR) Protocol for MANETs ASIC Implementation of 4 Bit Multipliers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1