ODDC: A Novel Clustering Algorithm Based on One-Dimensional Distance Calculation

Xue-gang Wang, Zhongzhi Li
{"title":"ODDC: A Novel Clustering Algorithm Based on One-Dimensional Distance Calculation","authors":"Xue-gang Wang, Zhongzhi Li","doi":"10.1109/ICCEE.2008.52","DOIUrl":null,"url":null,"abstract":"The scale of spatial data is usually very large. Clustering algorithm needs very high performance, good scalability, and able to deal with noise data and high-dimensional data. Proposed a quickly clustering algorithm based on one-dimensional distance calculation. The algorithm first partitions space-sets by one-dimensional distance, then clusters space-sets by set-distance and set-density. Next, uses the same approach to the next dimension, until all dimensions have been processed. Experimental results show ODDC algorithm has high-efficient features and is not sensitive to noise data.","PeriodicalId":365473,"journal":{"name":"2008 International Conference on Computer and Electrical Engineering","volume":"613 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Computer and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEE.2008.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The scale of spatial data is usually very large. Clustering algorithm needs very high performance, good scalability, and able to deal with noise data and high-dimensional data. Proposed a quickly clustering algorithm based on one-dimensional distance calculation. The algorithm first partitions space-sets by one-dimensional distance, then clusters space-sets by set-distance and set-density. Next, uses the same approach to the next dimension, until all dimensions have been processed. Experimental results show ODDC algorithm has high-efficient features and is not sensitive to noise data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的基于一维距离计算的聚类算法
空间数据的尺度通常非常大。聚类算法需要非常高的性能,良好的可扩展性,并且能够处理噪声数据和高维数据。提出了一种基于一维距离计算的快速聚类算法。该算法首先按一维距离划分空间集,然后按集距和集密度对空间集进行聚类。接下来,对下一个维度使用相同的方法,直到处理完所有维度。实验结果表明,ODDC算法具有高效、对噪声数据不敏感的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Understanding Code Patterns Analysis, Interpretation and Measurement Community Collaborative Filtering for E-Learning A Nonlinear Control Approach to Increase Power Oscillations Damping by SSSC Automatic Recognition of Pavement Surface Crack Based on BP Neural Network A Dynamic Model for Early Vision Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1