Improved recurrent NARX neural network model for state of charge estimation of lithium-ion battery using pso algorithm

M. Lipu, A. Hussain, M. Saad, A. Ayob, M. A. Hannan
{"title":"Improved recurrent NARX neural network model for state of charge estimation of lithium-ion battery using pso algorithm","authors":"M. Lipu, A. Hussain, M. Saad, A. Ayob, M. A. Hannan","doi":"10.1109/ISCAIE.2018.8405498","DOIUrl":null,"url":null,"abstract":"This paper aims to develop an accurate estimation technique for computing state of charge (SOC) of a lithium-ion battery using recurrent neural network algorithm. Nonlinear autoregressive with exogenous input (NARX) model is a well-known subclass of the recurrent neural network which has proven to be very effective and computationally rich for controlling dynamic system and predicting time series. However, the accuracy of recurrent NARX neural network depends on the amount of input and output order as well as a number of neurons in a hidden layer. Therefore, this study presents an improved recurrent NARX neural network based SOC estimation with particle swarm optimization (PSO) algorithm for finding the best value of input delays, feedback delays and a number of neurons in a hidden layer. The proposed model uses three most significant factor such as current, voltage and temperature without considering battery model. The model robustness is checked at low temperature (0°C), medium temperature (25°C), and high temperature (45°C). The US06 drive cycle is selected for model training and testing. The effectiveness of the proposed approach is compared with the back-propagation neural network (BPNN) optimized by PSO based on the SOC error, root mean square error (RMSE) and mean absolute error (MAE) and average execution time (AET). The results prove that the proposed model has higher estimation speed and achieves higher accuracy in reducing RMSE and MAE by 53% and 50% than BPNN based PSO model at 25°C.","PeriodicalId":333327,"journal":{"name":"2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAIE.2018.8405498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper aims to develop an accurate estimation technique for computing state of charge (SOC) of a lithium-ion battery using recurrent neural network algorithm. Nonlinear autoregressive with exogenous input (NARX) model is a well-known subclass of the recurrent neural network which has proven to be very effective and computationally rich for controlling dynamic system and predicting time series. However, the accuracy of recurrent NARX neural network depends on the amount of input and output order as well as a number of neurons in a hidden layer. Therefore, this study presents an improved recurrent NARX neural network based SOC estimation with particle swarm optimization (PSO) algorithm for finding the best value of input delays, feedback delays and a number of neurons in a hidden layer. The proposed model uses three most significant factor such as current, voltage and temperature without considering battery model. The model robustness is checked at low temperature (0°C), medium temperature (25°C), and high temperature (45°C). The US06 drive cycle is selected for model training and testing. The effectiveness of the proposed approach is compared with the back-propagation neural network (BPNN) optimized by PSO based on the SOC error, root mean square error (RMSE) and mean absolute error (MAE) and average execution time (AET). The results prove that the proposed model has higher estimation speed and achieves higher accuracy in reducing RMSE and MAE by 53% and 50% than BPNN based PSO model at 25°C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群算法的锂离子电池充电状态估计改进NARX神经网络模型
研究了一种基于递归神经网络的锂离子电池荷电状态精确估计技术。非线性外生输入自回归模型(NARX)是递归神经网络的一个分支,在控制动态系统和预测时间序列方面已被证明是非常有效和计算量丰富的。然而,循环NARX神经网络的准确性取决于输入输出顺序的数量以及隐藏层中神经元的数量。因此,本研究提出了一种改进的基于循环NARX神经网络的SOC估计,并结合粒子群优化(PSO)算法来寻找输入延迟、反馈延迟和隐藏层中神经元数量的最佳值。该模型在不考虑电池模型的情况下,使用了电流、电压和温度这三个最重要的因素。在低温(0°C),中温(25°C)和高温(45°C)下检查模型的鲁棒性。选择US06驱动循环进行模型培训和测试。将该方法的有效性与基于SOC误差、均方根误差(RMSE)、平均绝对误差(MAE)和平均执行时间(AET)的PSO优化的反向传播神经网络(BPNN)进行了比较。结果表明,在25°C下,与基于BPNN的PSO模型相比,该模型具有更高的估计速度,RMSE和MAE分别降低了53%和50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved recurrent NARX neural network model for state of charge estimation of lithium-ion battery using pso algorithm Exploring antecedent factors toward knowledge sharing intention in E-learning The development of sports science knowledge management systems through CommonKADS and digital Kanban board Cancelable biometrics technique for iris recognition Timing analysis for Diffie Hellman Key Exchange In U-BOOT using Raspberry pi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1