Control of a high-order power system by neural adaptive feedback linearization

K. Fregene, D. Kennedy
{"title":"Control of a high-order power system by neural adaptive feedback linearization","authors":"K. Fregene, D. Kennedy","doi":"10.1109/ISIC.1999.796626","DOIUrl":null,"url":null,"abstract":"Discusses the design of an adaptive feedback linearizing excitation controller/power system stabilizer using neural networks, for a high order single machine/infinite bus power system model. The neural networks are used to identify a discrete-time nonlinear dynamical model of the system. Although the controller itself is not implemented using a neural network, it adaptively uses the parameter estimates given by the neural system model to determine an appropriate feedback linearizing control law at each discrete time step. This approach avoids the requirement for exact knowledge of the plant and other difficulties associated with implementing analytical input-output feedback linearizing controllers for complex power systems. Simulation results demonstrate voltage tracking, damping of power angle oscillations and the possibility of user-specified dynamics.","PeriodicalId":300130,"journal":{"name":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1999.796626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Discusses the design of an adaptive feedback linearizing excitation controller/power system stabilizer using neural networks, for a high order single machine/infinite bus power system model. The neural networks are used to identify a discrete-time nonlinear dynamical model of the system. Although the controller itself is not implemented using a neural network, it adaptively uses the parameter estimates given by the neural system model to determine an appropriate feedback linearizing control law at each discrete time step. This approach avoids the requirement for exact knowledge of the plant and other difficulties associated with implementing analytical input-output feedback linearizing controllers for complex power systems. Simulation results demonstrate voltage tracking, damping of power angle oscillations and the possibility of user-specified dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经自适应反馈线性化的高阶电力系统控制
针对高阶单机/无限母线电力系统模型,讨论了基于神经网络的自适应反馈线性化励磁控制器/电力系统稳定器的设计。利用神经网络辨识系统的离散非线性动力学模型。虽然控制器本身没有使用神经网络实现,但它自适应地使用神经系统模型给出的参数估计来确定每个离散时间步的适当反馈线性化控制律。这种方法避免了对电厂精确知识的要求,也避免了在复杂电力系统中实施分析输入输出反馈线性化控制器时遇到的其他困难。仿真结果证明了电压跟踪、功率角振荡阻尼和用户指定动态的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive control of uncertain Chua's circuits Multi-resolution methods in non-destructive testing of aerospace structures and in medicine Multi-resolution techniques in the rules-based intelligent control systems: a universal approximation result Adaptive critic designs for self-learning ship steering control Stability analysis of switched systems with impulse effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1