An ICA-based adaptive filter algorithm for system identification using a state space approach

Jun-Mei Yang, H. Sakai
{"title":"An ICA-based adaptive filter algorithm for system identification using a state space approach","authors":"Jun-Mei Yang, H. Sakai","doi":"10.1109/ICOSP.2008.4697116","DOIUrl":null,"url":null,"abstract":"This paper proposes a new ICA-based adaptive filter algorithm for system identification using a state space approach. An additive noise model is considered and the signal is separated from the noisy observation. First, we introduce an augmented state-space expression of the observed signal representing the problem in terms of ICA, and then using the natural gradient, we derive a new algorithm. The local convergence conditions of the proposed algorithm is derived. Some simulations are carried out to illustrate its effectiveness.","PeriodicalId":445699,"journal":{"name":"2008 9th International Conference on Signal Processing","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2008.4697116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new ICA-based adaptive filter algorithm for system identification using a state space approach. An additive noise model is considered and the signal is separated from the noisy observation. First, we introduce an augmented state-space expression of the observed signal representing the problem in terms of ICA, and then using the natural gradient, we derive a new algorithm. The local convergence conditions of the proposed algorithm is derived. Some simulations are carried out to illustrate its effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用状态空间方法的基于ica的系统识别自适应滤波算法
本文提出了一种新的基于ica的自适应滤波算法,利用状态空间方法进行系统辨识。考虑了加性噪声模型,将信号与噪声观测分离。首先,我们引入了用ICA表示问题的观测信号的增广状态空间表达式,然后利用自然梯度推导了一种新的算法。给出了该算法的局部收敛条件。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel pulse shaping method for Ultra-Wideband communications Matching pursuits with undercomplete dictionary A novel decision-directed channel estimator for OFDM systems Task analysis methods for data selection in task adaptation on mandarin isolated word recognition Combining LBP and Adaboost for facial expression recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1