{"title":"Two extensions to ensemble speaker and speaking environment modeling for robust automatic speech recognition","authors":"Yu Tsao, Chin-Hui Lee","doi":"10.1109/ASRU.2007.4430087","DOIUrl":null,"url":null,"abstract":"Recently an ensemble speaker and speaking environment modeling (ESSEM) approach to characterizing unknown testing environments was studied for robust speech recognition. Each environment is modeled by a super-vector consisting of the entire set of mean vectors from all Gaussian densities of a set of HMMs for a particular environment. The super-vector for a new testing environment is then obtained by an affine transformation on the ensemble super-vectors. In this paper, we propose a minimum classification error training procedure to obtain discriminative ensemble elements, and a super-vector clustering technique to achieve refined ensemble structures. We test these two extentions to ESSEM on Aurora2. In a per-utterance unsupervised adaptation mode we achieved an average WER of 4.99% from OdB to 20 dB conditions with these two extentions when compared with a 5.51% WER obtained with the ML-trained gender-dependent baseline. To our knowledge this represents the best result reported in the literature on the Aurora2 connected digit recognition task.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Recently an ensemble speaker and speaking environment modeling (ESSEM) approach to characterizing unknown testing environments was studied for robust speech recognition. Each environment is modeled by a super-vector consisting of the entire set of mean vectors from all Gaussian densities of a set of HMMs for a particular environment. The super-vector for a new testing environment is then obtained by an affine transformation on the ensemble super-vectors. In this paper, we propose a minimum classification error training procedure to obtain discriminative ensemble elements, and a super-vector clustering technique to achieve refined ensemble structures. We test these two extentions to ESSEM on Aurora2. In a per-utterance unsupervised adaptation mode we achieved an average WER of 4.99% from OdB to 20 dB conditions with these two extentions when compared with a 5.51% WER obtained with the ML-trained gender-dependent baseline. To our knowledge this represents the best result reported in the literature on the Aurora2 connected digit recognition task.