AI-based Consumers' Preference Prediction Using a Research-grade BCI and a Commercial-grade BCI for Neuromarketing: A Systematic Comparison

Farhan Ishtiaque, Fazla Rabbi Mashrur, Mohammad Tohidul Islam Miya, Khandoker Mahmudur Rahman, R. Vaidyanathan, S. Anwar, F. Sarker, K. Mamun
{"title":"AI-based Consumers' Preference Prediction Using a Research-grade BCI and a Commercial-grade BCI for Neuromarketing: A Systematic Comparison","authors":"Farhan Ishtiaque, Fazla Rabbi Mashrur, Mohammad Tohidul Islam Miya, Khandoker Mahmudur Rahman, R. Vaidyanathan, S. Anwar, F. Sarker, K. Mamun","doi":"10.1109/ECCE57851.2023.10101563","DOIUrl":null,"url":null,"abstract":"In Neuromarketing, BCI technology is used to analyze how a consumer behaves in response to a marketing stimulus, to evaluate the stimuli itself. Traditionally it can be achieved by different marketing research techniques such as questioner-based surveys, interviews, field surveys, etc. But since these procedures are time-consuming and prone to human error, neuromarketing promises a more advanced, automated, and accurate solution. Most of the neuromarketing solutions use research-grade EEG devices to analyze consumer preferences, but their effectiveness using consumer-grade EEG devices is unknown. In this study, we designed an experiment to compare a research-grade EEG device with a consumer-grade EEG device for predicting consumer preference stated as affective attitude (AA) and purchase intention (PI). We determined what type of setup, processing, and algorithm brings out the best result using the two devices. EEG signals were collected while the participants were shown pictures of different products in two different setups After that several signal-processing techniques were applied to remove artifacts and multi-domain features were extracted. 50 features were selected using Recursing Feature Elimination techniques. SMOTE was used to balance out the data. After that SVM classifier was used to classify Positive and Negative consumer preferences. With the first setup, we managed to achieve 82.4 % and 85.23 % accuracy for predicting purchase intention and affective attitude respectively with the research-grade EEG device whereas we achieved 75.43% and 79.5% accuracy with the commercial-grade EEG device. With the second setup, it's 78.75% and 83.75% using the research-grade EEG device whereas it's 75% and 82.97% using the commercial-grade EEG device for purchase intention and affective attitude respectively.","PeriodicalId":131537,"journal":{"name":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE57851.2023.10101563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Neuromarketing, BCI technology is used to analyze how a consumer behaves in response to a marketing stimulus, to evaluate the stimuli itself. Traditionally it can be achieved by different marketing research techniques such as questioner-based surveys, interviews, field surveys, etc. But since these procedures are time-consuming and prone to human error, neuromarketing promises a more advanced, automated, and accurate solution. Most of the neuromarketing solutions use research-grade EEG devices to analyze consumer preferences, but their effectiveness using consumer-grade EEG devices is unknown. In this study, we designed an experiment to compare a research-grade EEG device with a consumer-grade EEG device for predicting consumer preference stated as affective attitude (AA) and purchase intention (PI). We determined what type of setup, processing, and algorithm brings out the best result using the two devices. EEG signals were collected while the participants were shown pictures of different products in two different setups After that several signal-processing techniques were applied to remove artifacts and multi-domain features were extracted. 50 features were selected using Recursing Feature Elimination techniques. SMOTE was used to balance out the data. After that SVM classifier was used to classify Positive and Negative consumer preferences. With the first setup, we managed to achieve 82.4 % and 85.23 % accuracy for predicting purchase intention and affective attitude respectively with the research-grade EEG device whereas we achieved 75.43% and 79.5% accuracy with the commercial-grade EEG device. With the second setup, it's 78.75% and 83.75% using the research-grade EEG device whereas it's 75% and 82.97% using the commercial-grade EEG device for purchase intention and affective attitude respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经营销中基于ai的研究级脑机接口与商业级脑机接口的消费者偏好预测:系统比较
在神经营销学中,脑机接口技术被用来分析消费者对营销刺激的反应,以评估刺激本身。传统上,它可以通过不同的营销研究技术来实现,如基于问题者的调查、访谈、实地调查等。但由于这些程序耗时且容易出现人为错误,神经营销有望提供更先进、自动化和准确的解决方案。大多数神经营销解决方案使用研究级脑电图设备来分析消费者偏好,但使用消费级脑电图设备的有效性尚不清楚。在本研究中,我们设计了一个实验来比较研究级EEG设备和消费级EEG设备预测消费者偏好,如情感态度(AA)和购买意向(PI)。我们确定了哪种类型的设置、处理和算法可以使用这两个设备产生最佳结果。在两种不同场景下,分别给受试者看不同产品的图片,同时采集EEG信号,然后应用多种信号处理技术去除伪影,提取多域特征。使用递归特征消除技术选择了50个特征。使用SMOTE来平衡数据。然后使用SVM分类器对消费者的正偏好和负偏好进行分类。在第一次设置中,我们使用研究级EEG设备分别达到了82.4%和85.23%的预测购买意愿和情感态度的准确率,而使用商业级EEG设备我们分别达到了75.43%和79.5%的准确率。在第二种设置中,研究级EEG设备的购买意向和情感态度分别为78.75%和83.75%,商用级EEG设备的购买意向和情感态度分别为75%和82.97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclone Prediction Visualization Tools Using Machine Learning Models and Optical Flow Exploratory Perspective of PV Net-Energy-Metering for Residential Prosumers: A Case Study in Dhaka, Bangladesh Estimation of Soil Moisture with Meteorological Variables in Supervised Machine Learning Models Deep CNN-GRU Based Human Activity Recognition with Automatic Feature Extraction Using Smartphone and Wearable Sensors Bengali-English Neural Machine Translation Using Deep Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1