Modeling and Analyzing MAPE-K Feedback Loops for Self-Adaptation

Paolo Arcaini, E. Riccobene, P. Scandurra
{"title":"Modeling and Analyzing MAPE-K Feedback Loops for Self-Adaptation","authors":"Paolo Arcaini, E. Riccobene, P. Scandurra","doi":"10.1109/SEAMS.2015.10","DOIUrl":null,"url":null,"abstract":"The MAPE-K (Monitor-Analyze-Plan-Execute over a shared Knowledge) feedback loop is the most influential reference control model for autonomic and self-adaptive systems. This paper presents a conceptual and methodological framework for formal modeling, validating, and verifying distributed self-adaptive systems. We show how MAPE-K loops for self adaptation can be naturally specified in an abstract stateful language like Abstract State Machines. In particular, we exploit the concept of multi-agent Abstract State Machines to specify decentralized adaptation control by using MAPE computations. We support techniques for validating and verifying adaptation scenarios, and getting feedback of the correctness of the adaptation logic as implemented by the MAPE-K loops. In particular, a verification technique based on meta-properties is proposed to allow discovering unwanted interferences between MAPE-K loops at the early stages of the system design. As a proof-of concepts, we model and analyze a traffic monitoring system.","PeriodicalId":144594,"journal":{"name":"2015 IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"188","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAMS.2015.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 188

Abstract

The MAPE-K (Monitor-Analyze-Plan-Execute over a shared Knowledge) feedback loop is the most influential reference control model for autonomic and self-adaptive systems. This paper presents a conceptual and methodological framework for formal modeling, validating, and verifying distributed self-adaptive systems. We show how MAPE-K loops for self adaptation can be naturally specified in an abstract stateful language like Abstract State Machines. In particular, we exploit the concept of multi-agent Abstract State Machines to specify decentralized adaptation control by using MAPE computations. We support techniques for validating and verifying adaptation scenarios, and getting feedback of the correctness of the adaptation logic as implemented by the MAPE-K loops. In particular, a verification technique based on meta-properties is proposed to allow discovering unwanted interferences between MAPE-K loops at the early stages of the system design. As a proof-of concepts, we model and analyze a traffic monitoring system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应MAPE-K反馈回路的建模与分析
MAPE-K(基于共享知识的监测-分析-计划-执行)反馈回路是自主和自适应系统中最具影响力的参考控制模型。本文提出了一个形式化建模、验证和验证分布式自适应系统的概念和方法框架。我们展示了如何在抽象状态机这样的抽象状态语言中自然地指定用于自适应的MAPE-K循环。特别地,我们利用多智能体抽象状态机的概念,通过MAPE计算来指定分散的自适应控制。我们支持验证和验证自适应场景的技术,并获得由MAPE-K循环实现的自适应逻辑正确性的反馈。特别地,提出了一种基于元属性的验证技术,允许在系统设计的早期阶段发现MAPE-K回路之间不必要的干扰。作为概念验证,我们对交通监控系统进行建模和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimizing Nasty Surprises with Better Informed Decision-Making in Self-Adaptive Systems SASS: Self-Adaptation Using Stochastic Search AC-Contract: Run-Time Verification of Context-Aware Applications Mitigating Browser Fingerprint Tracking: Multi-level Reconfiguration and Diversification Modeling and Analyzing MAPE-K Feedback Loops for Self-Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1