Simulation analytics for virtual statistics via k nearest neighbors

Yujing Lin, B. Nelson
{"title":"Simulation analytics for virtual statistics via k nearest neighbors","authors":"Yujing Lin, B. Nelson","doi":"10.1109/WSC.2016.7822111","DOIUrl":null,"url":null,"abstract":"“Virtual statistics” are performance measures that are conditional on the occurrence of an event; virtual waiting time of a customer arriving to a queue at time t is one example. In this paper, we describe a k-nearest-neighbor method for estimating virtual statistics post-simulation from the retained sample paths, examining both its small-sample and asymptotic properties. We implement leave-one-replication-out cross validation for tuning the parameter k, and compare the prediction performance of the k-nearest-neighbor estimator with a time-bucket estimator.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2016.7822111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

“Virtual statistics” are performance measures that are conditional on the occurrence of an event; virtual waiting time of a customer arriving to a queue at time t is one example. In this paper, we describe a k-nearest-neighbor method for estimating virtual statistics post-simulation from the retained sample paths, examining both its small-sample and asymptotic properties. We implement leave-one-replication-out cross validation for tuning the parameter k, and compare the prediction performance of the k-nearest-neighbor estimator with a time-bucket estimator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过k个最近邻进行虚拟统计的仿真分析
“虚拟统计”是以事件发生为条件的性能度量;客户在时间t到达队列的虚拟等待时间就是一个例子。在本文中,我们描述了一种k近邻方法,用于从保留的样本路径估计虚拟统计后仿真,并检查了它的小样本和渐近性质。我们实现了留一个复制的交叉验证来调整参数k,并比较了k-近邻估计器和时间桶估计器的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Simheuristics with Petri net models: Potential applications to logistics and supply chain management A ship block logistics support system based on the shipyard simulation framework Modeling & simulation's role as a service to military and homeland security decision makers Multiple comparisons with a standard using false discovery rates Lean design and analysis of a milk-run delivery system: Case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1