Data-centric AI to Improve Early Detection of Mental Illness

Alex X. Wang, S. Chukova, Colin Simpson, Binh P. Nguyen
{"title":"Data-centric AI to Improve Early Detection of Mental Illness","authors":"Alex X. Wang, S. Chukova, Colin Simpson, Binh P. Nguyen","doi":"10.1109/SSP53291.2023.10207938","DOIUrl":null,"url":null,"abstract":"The growth of information technology and advancements in artificial intelligence (AI) have made data creation and usage more prevalent. AI research can be grouped into two categories: model-centric and data-centric. Model-centric AI focuses on using the same data and making changes to model hyper-parameters, architectures, and other configurations. Data-centric AI, on the other hand, prioritizes improving existing data or incorporating new data to improve the performance of machine learning (ML) algorithms. Data-centric AI can greatly improve the performance of machine learning models by improving data quality, increasing data diversity, and using advanced data augmentation methods. The use of ML for early detection of mental health issues is vital due to its ability to identify issues early, provide personalized treatments, detect patterns, and increase accessibility to mental health services. While there have been numerous mental illness detection studies using model-centric approaches, there is a lack of research from a data-centric AI perspective. This study aims to address this gap by comparing established tabular data synthesis methods to explore the impact of synthetic data and data-centric AI on the early detection of mental health issues.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10207938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growth of information technology and advancements in artificial intelligence (AI) have made data creation and usage more prevalent. AI research can be grouped into two categories: model-centric and data-centric. Model-centric AI focuses on using the same data and making changes to model hyper-parameters, architectures, and other configurations. Data-centric AI, on the other hand, prioritizes improving existing data or incorporating new data to improve the performance of machine learning (ML) algorithms. Data-centric AI can greatly improve the performance of machine learning models by improving data quality, increasing data diversity, and using advanced data augmentation methods. The use of ML for early detection of mental health issues is vital due to its ability to identify issues early, provide personalized treatments, detect patterns, and increase accessibility to mental health services. While there have been numerous mental illness detection studies using model-centric approaches, there is a lack of research from a data-centric AI perspective. This study aims to address this gap by comparing established tabular data synthesis methods to explore the impact of synthetic data and data-centric AI on the early detection of mental health issues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以数据为中心的人工智能改善精神疾病的早期发现
信息技术的发展和人工智能(AI)的进步使数据的创建和使用更加普遍。人工智能研究可以分为两类:以模型为中心和以数据为中心。以模型为中心的AI专注于使用相同的数据并对模型超参数、架构和其他配置进行更改。另一方面,以数据为中心的人工智能优先考虑改进现有数据或合并新数据,以提高机器学习(ML)算法的性能。以数据为中心的人工智能可以通过提高数据质量、增加数据多样性和使用先进的数据增强方法来极大地提高机器学习模型的性能。机器学习用于早期发现心理健康问题是至关重要的,因为它能够及早发现问题,提供个性化治疗,发现模式,并增加获得心理健康服务的机会。虽然有许多使用以模型为中心的方法进行的精神疾病检测研究,但缺乏从数据为中心的人工智能角度进行的研究。本研究旨在通过比较已建立的表格数据合成方法来解决这一差距,探讨合成数据和以数据为中心的人工智能对早期发现心理健康问题的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1