Comprehensive Design Approach for Field-Oriented Control of Interior Permanent Magnet Synchronous Machines

T. Busarello, A. Bubshait, O. Varaprasad, A. Alsaleem, Marcelo Simoes
{"title":"Comprehensive Design Approach for Field-Oriented Control of Interior Permanent Magnet Synchronous Machines","authors":"T. Busarello, A. Bubshait, O. Varaprasad, A. Alsaleem, Marcelo Simoes","doi":"10.1109/gpecom55404.2022.9815693","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive design approach for a field-oriented control of Interior Permanent Magnet Synchronous Machines (IPMSM). Initially, the IPMSM model is revisited. Later, a step-by-step procedure for designing a Field Oriented Control (FOC) Strategy for IPMSM is presented. The control strategy is in dq-rotating reference frame and it is synchronized with the rotor position. The current controllers are designed based on setting a desired closed-loop time-constant while the speed controller is designed based on a frequency response approach, which is different from the conventional methods. The proposed approach supplies all the steps to accurately tuning the parameters of the Proportional-Integrator (PI) controllers of the current and speed control loops. Furthermore, the proposed design approach is a fast, reliable and accurate guide to implement IPMSM drive based on FOC. Results from a Hardware-in-Loop (HIL) with external microcontroller are presented. The comprehensive design approach is verified under two different IPMSM parameters and the results showed its effectiveness.","PeriodicalId":441321,"journal":{"name":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/gpecom55404.2022.9815693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a comprehensive design approach for a field-oriented control of Interior Permanent Magnet Synchronous Machines (IPMSM). Initially, the IPMSM model is revisited. Later, a step-by-step procedure for designing a Field Oriented Control (FOC) Strategy for IPMSM is presented. The control strategy is in dq-rotating reference frame and it is synchronized with the rotor position. The current controllers are designed based on setting a desired closed-loop time-constant while the speed controller is designed based on a frequency response approach, which is different from the conventional methods. The proposed approach supplies all the steps to accurately tuning the parameters of the Proportional-Integrator (PI) controllers of the current and speed control loops. Furthermore, the proposed design approach is a fast, reliable and accurate guide to implement IPMSM drive based on FOC. Results from a Hardware-in-Loop (HIL) with external microcontroller are presented. The comprehensive design approach is verified under two different IPMSM parameters and the results showed its effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内置式永磁同步电机磁场定向控制综合设计方法
本文提出了一种内部永磁同步电机磁场定向控制的综合设计方法。首先,重新审视IPMSM模型。然后,给出了IPMSM场定向控制策略的设计步骤。该控制策略采用dq旋转参考系,并与转子位置同步。电流控制器的设计是基于设定所需的闭环时间常数,而速度控制器的设计是基于频率响应的方法,这与传统的方法不同。该方法提供了精确调谐电流和速度控制回路的比例积分器(PI)控制器参数的所有步骤。该设计方法为实现基于FOC的IPMSM驱动提供了快速、可靠和准确的指导。给出了一个外部微控制器的硬件在环(HIL)测试结果。在两种不同的IPMSM参数下,验证了综合设计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conducted Emissions Analysis of DC-DC Buck Converter A Study on the Effect of Phase Shifter Quantization Error on the Spectral Efficiency Using Neural Network Delay Margin Computation of Generator Excitation Control System with Incommensurate Time Delays Using Critical Eigenvalue Tracing Method ICT Enabled Smart Street Parking System for Smart Cities Experimental Impact Analysis of the Refrigerator Cable Design On Disturbance Power Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1