Neural network pattern classifications of transient stability and loss of excitation for synchronous generators

A. Sharaf, T. Lie
{"title":"Neural network pattern classifications of transient stability and loss of excitation for synchronous generators","authors":"A. Sharaf, T. Lie","doi":"10.1109/ICNN.1994.374695","DOIUrl":null,"url":null,"abstract":"The paper presents a novel AI-ANN neural network global online fault detection, pattern classification, and relaying detection scheme for synchronous generators in interconnected electric utility networks. The input discriminant vector comprises the dominant FFT frequency spectra of eighteen input variables forming the discriminant diagnostic hyperplane. The online ANN based relaying scheme classifies fault existence, fault type as either transient stability or loss of excitation, the allowable critical clearing time, and loss of excitation type as either open circuit or short circuit filed condition. The proposed FFT dominant frequency-based hyperplane diagnostic technique can be easily extended to multimachine electric interconnected AC systems.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The paper presents a novel AI-ANN neural network global online fault detection, pattern classification, and relaying detection scheme for synchronous generators in interconnected electric utility networks. The input discriminant vector comprises the dominant FFT frequency spectra of eighteen input variables forming the discriminant diagnostic hyperplane. The online ANN based relaying scheme classifies fault existence, fault type as either transient stability or loss of excitation, the allowable critical clearing time, and loss of excitation type as either open circuit or short circuit filed condition. The proposed FFT dominant frequency-based hyperplane diagnostic technique can be easily extended to multimachine electric interconnected AC systems.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同步发电机暂态稳定与失磁的神经网络模式分类
提出了一种新的基于AI-ANN神经网络的同步发电机故障在线检测、模式分类和继电保护检测方案。输入判别向量由组成判别诊断超平面的18个输入变量的主导FFT频谱组成。基于在线人工神经网络的继电方案将故障是否存在、故障类型分为暂态稳定或失磁、允许临界清除时间、失磁类型分为开路或短路。所提出的基于FFT优势频率的超平面诊断技术可以很容易地扩展到多机电力互联交流系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1