Reynolds-Averaged Navier-Stokes Modeling of Turbulent Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz Mixing Using a Higher-Order Shock-Capturing Method

O. Schilling
{"title":"Reynolds-Averaged Navier-Stokes Modeling of Turbulent Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz Mixing Using a Higher-Order Shock-Capturing Method","authors":"O. Schilling","doi":"10.1115/ajkfluids2019-5235","DOIUrl":null,"url":null,"abstract":"\n A numerical implementation of a large number of Reynolds-averaged Navier–Stokes (RANS) models based on two-, three-, four-equation, and Reynolds stress turbulence models (using either the turbulent kinetic energy dissipation rate or the turbulent lengthscale) in an Eulerian, finite-difference shock-capturing code is described. The code uses third-order weighted essentially nonoscillatory (WENO) reconstruction of the advective fluxes, and second- or fourth-order central difference derivatives for the computation of spatial gradients. A third-order TVD Runge–Kutta time-evolution scheme is used to evolve the fields in time. Improved closures for the turbulence production terms, compressibility corrections, mixture transport coefficients, and a consistent initialization methodology for the turbulent fields are briefly summarized. The code framework allows for systematic comparisons of detailed predictions from a variety of turbulence models of increasing complexity. Applications of the code with selected K–ε based models are illustrated for each of the three instabilities. Simulations of Rayleigh–Taylor unstable flows for Atwood numbers 0.1–0.9 are shown to be consistent with previous implicit LES (ILES) results and with the expectation of increased asymmetry in the mixing layer characteristics with increasing stratification. Simulations of reshocked Richtmyer–Meshkov turbulent mixing corresponding to experiments with light-to-heavy transition in air/sulfur hexafluoride and incident shock Mach number Mas = 1.50, and heavy-to-light transition in sulfur hexafluoride/air with Mas = 1.45 are shown to be in generally good agreement with both pre- and post-reshock mixing layer widths. Finally, simulations of the seven Brown–Roshko Kelvin–Helmholtz experiments with various velocity and density ratios using nitrogen, helium, and air are shown to give mixing layer predictions in good agreement with data. The results indicate that the numerical algorithms and turbulence models are suitable for simulating these classes of inhomogeneous turbulent flows.","PeriodicalId":322380,"journal":{"name":"Volume 5: Multiphase Flow","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Multiphase Flow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A numerical implementation of a large number of Reynolds-averaged Navier–Stokes (RANS) models based on two-, three-, four-equation, and Reynolds stress turbulence models (using either the turbulent kinetic energy dissipation rate or the turbulent lengthscale) in an Eulerian, finite-difference shock-capturing code is described. The code uses third-order weighted essentially nonoscillatory (WENO) reconstruction of the advective fluxes, and second- or fourth-order central difference derivatives for the computation of spatial gradients. A third-order TVD Runge–Kutta time-evolution scheme is used to evolve the fields in time. Improved closures for the turbulence production terms, compressibility corrections, mixture transport coefficients, and a consistent initialization methodology for the turbulent fields are briefly summarized. The code framework allows for systematic comparisons of detailed predictions from a variety of turbulence models of increasing complexity. Applications of the code with selected K–ε based models are illustrated for each of the three instabilities. Simulations of Rayleigh–Taylor unstable flows for Atwood numbers 0.1–0.9 are shown to be consistent with previous implicit LES (ILES) results and with the expectation of increased asymmetry in the mixing layer characteristics with increasing stratification. Simulations of reshocked Richtmyer–Meshkov turbulent mixing corresponding to experiments with light-to-heavy transition in air/sulfur hexafluoride and incident shock Mach number Mas = 1.50, and heavy-to-light transition in sulfur hexafluoride/air with Mas = 1.45 are shown to be in generally good agreement with both pre- and post-reshock mixing layer widths. Finally, simulations of the seven Brown–Roshko Kelvin–Helmholtz experiments with various velocity and density ratios using nitrogen, helium, and air are shown to give mixing layer predictions in good agreement with data. The results indicate that the numerical algorithms and turbulence models are suitable for simulating these classes of inhomogeneous turbulent flows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
湍流Rayleigh-Taylor, richmyer - meshkov和Kelvin-Helmholtz混合使用高阶激波捕获方法的reynolds -平均Navier-Stokes建模
在欧拉有限差分激波捕获程序中,描述了基于二方程、三方程、四方程和雷诺应力湍流模型(使用湍流动能耗散率或湍流长度尺度)的大量Reynolds-average Navier-Stokes (RANS)模型的数值实现。该代码使用三阶加权本质非振荡(WENO)重建平流通量,并使用二阶或四阶中心差分导数计算空间梯度。采用三阶TVD龙格-库塔时间演化格式对场进行时间演化。简要总结了湍流产生项的改进闭包、可压缩性修正、混合输运系数和湍流场的一致初始化方法。代码框架允许系统地比较各种复杂的湍流模型的详细预测。对于这三种不稳定性中的每一种,用所选的基于K -ε的模型说明了代码的应用。阿特伍德数为0.1-0.9的瑞利-泰勒不稳定流动的模拟结果与先前的隐式LES (ILES)结果一致,并且与混合层特征随分层增加而增加的不对称性的预期一致。空气/六氟化硫轻转重、入射激波马赫数Mas = 1.50、六氟化硫/空气重转轻、入射激波马赫数Mas = 1.45的再激波richmyer - meshkov湍流混合实验的模拟结果与再激波前后的混合层宽度基本吻合。最后,用氮气、氦气和空气对七个不同速度和密度比的布朗-罗什科开尔文-亥姆霍兹实验进行了模拟,结果表明混合层的预测与数据非常吻合。结果表明,数值算法和湍流模型适用于这类非均匀湍流的模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Transient Approach for Estimating Concentration of Water Droplets in Oil and Corrosion Assessment in the Oil and Gas Industry Effect of Interstage Injection on Compressor Flow Characteristic Air Entrainment and Bubble Generation by a Hydrofoil in a Turbulent Channel Flow Experimental Study of Bubble-Droplet Interactions in Improved Primary Oil Separation Effects of Liquid Viscosity on Laser-Induced Shock Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1