Enhancing phase change memory lifetime through fine-grained current regulation and voltage upscaling

Lei Jiang, Youtao Zhang, Jun Yang
{"title":"Enhancing phase change memory lifetime through fine-grained current regulation and voltage upscaling","authors":"Lei Jiang, Youtao Zhang, Jun Yang","doi":"10.1109/ISLPED.2011.5993624","DOIUrl":null,"url":null,"abstract":"Phase Change Memory (PCM) recently has emerged as a promising memory technology. However it suffers from limited write endurance. Recent studies have shown that the lifetime of PCM cells heavily depends on the RESET energy. Typically, larger than optimal RESET current is employed to accommodate process variation. This leads to over-programming of cells, and dramatically-shortened lifetime. This paper proposes two innovative low power techniques, Fine-Grained Current Regulation (FGCR) and Voltage Upscaling (VU), to cut down the RESET current, leaving a small number of difficult-to-reset cells unused. We then utilize error correction code to rescue those cells. Our experimental results show that FGCR and VU reduce the PCM write power by 33%, and prolong the lifetime of a PCM chip by 71%–102%.","PeriodicalId":117694,"journal":{"name":"IEEE/ACM International Symposium on Low Power Electronics and Design","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2011.5993624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Phase Change Memory (PCM) recently has emerged as a promising memory technology. However it suffers from limited write endurance. Recent studies have shown that the lifetime of PCM cells heavily depends on the RESET energy. Typically, larger than optimal RESET current is employed to accommodate process variation. This leads to over-programming of cells, and dramatically-shortened lifetime. This paper proposes two innovative low power techniques, Fine-Grained Current Regulation (FGCR) and Voltage Upscaling (VU), to cut down the RESET current, leaving a small number of difficult-to-reset cells unused. We then utilize error correction code to rescue those cells. Our experimental results show that FGCR and VU reduce the PCM write power by 33%, and prolong the lifetime of a PCM chip by 71%–102%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过细粒度电流调节和电压升级提高相变存储器寿命
相变存储器(PCM)是近年来发展起来的一种很有前途的存储技术。然而,它的写入持久性有限。最近的研究表明,PCM细胞的寿命在很大程度上取决于RESET能量。通常,大于最佳复位电流被用来适应工艺变化。这导致细胞的过度编程,并大大缩短了寿命。本文提出了两种创新的低功耗技术,细粒度电流调节(FGCR)和电压升级(VU),以减少复位电流,留下少量难以复位的电池闲置。然后我们利用纠错码来挽救这些细胞。实验结果表明,FGCR和VU可使PCM写入功率降低33%,使PCM芯片寿命延长71% ~ 102%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Processor caches built using multi-level spin-transfer torque RAM cells Object-based local dimming for LCD systems with LED BLUs Near-/sub-threshold DLL-based clock generator with PVT-aware locking range compensation Learning to manage combined energy supply systems An energy-efficient adaptive hybrid cache
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1