Optical Character Recognition for Coptic fonts: A multi-source approach for scholarly editions

E. Lincke, Kirill Bulert, Marco Büchler
{"title":"Optical Character Recognition for Coptic fonts: A multi-source approach for scholarly editions","authors":"E. Lincke, Kirill Bulert, Marco Büchler","doi":"10.1145/3322905.3322931","DOIUrl":null,"url":null,"abstract":"In this paper, we show that the OCR engine Ocropy can be trained for fonts used in rather complex and varied Coptic typeset. For each of the three fonts presented in this paper, we used a number of texts from scholarly editions with different philological and editorial standards and texts from two different dialects of Coptic (Bohairic and Sahidic). Despite the complexity of the training data, we observed accuracy rates of 97.5%, for one font even up to 99%.","PeriodicalId":418911,"journal":{"name":"Proceedings of the 3rd International Conference on Digital Access to Textual Cultural Heritage","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Digital Access to Textual Cultural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3322905.3322931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we show that the OCR engine Ocropy can be trained for fonts used in rather complex and varied Coptic typeset. For each of the three fonts presented in this paper, we used a number of texts from scholarly editions with different philological and editorial standards and texts from two different dialects of Coptic (Bohairic and Sahidic). Despite the complexity of the training data, we observed accuracy rates of 97.5%, for one font even up to 99%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
科普特字体的光学字符识别:学术版的多源方法
在本文中,我们展示了OCR引擎Ocropy可以训练用于相当复杂和变化的科普特排版的字体。对于本文中提出的三种字体中的每一种,我们都使用了许多来自不同语言学和编辑标准的学术版本的文本,以及来自两种不同的科普特方言(波海里克语和萨希迪语)的文本。尽管训练数据很复杂,但我们观察到准确率达到97.5%,一种字体甚至达到99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Articles in a Digitized Finnish Historical Newspaper Collection 1771-1929: Early Results Using the PIVAJ Software OCR for Greek polytonic (multi accent) historical printed documents: development, optimization and quality control Deep Learning-Based Morphological Taggers and Lemmatizers for Annotating Historical Texts Validating 126 million MARC records Automatic Semantic Text Tagging on Historical Lexica by Combining OCR and Typography Classification: A Case Study on Daniel Sander's Wörterbuch der Deutschen Sprache
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1